INTERNATIONAL 1ISO
STANDARD 15765-3

First edition
2004-10-15

Road vehicles — Diagnostics on
Controller Area Networks (CAN) —

Part 3:
Implementation of unified diagnostic
services (UDS on CAN)

Veéhicules routiers — Diagnostic sur gestionnaire de réseat: de
communication (CAN) —

Partie 3: Mise en ceuvre des services de diagnostic unifiés (SDU sur
CAN)

—
m—

Reference number
iSO 15765-3:2004(E)

Copyright International Organtzation for Standardization © 150 2004
Reproduced by tHS undar icaense with 150
No reproduction or networking permitted withoust kcense from IHS Mot for Razaka

1ISO 15765-3:2004(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The 130 Central Secretariat
accepts no liability in this area.

Adobe s a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General |nfo relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by SO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below:.

© IS0 2004

All rights reserved. Unless otherwise specified, no parnt of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without pemission in writing from either 1ISQO at the address below or
ISO’s member body in the country of the requester.

SO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. +4122749 01 11

Fax + 41227490847

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerand

Copyright |ri:amuﬂnmnrgmuoninrswmﬁ:aﬁm © IS0 2004 — All rights reserved
Reproduced by IHS under conse with 150
No reproduction of networking permitted without icense from 1HS Not for Resale

ISO 15765-3:2004(E)

Contents Page
F O WO . iienieiieieiiaasnionnmaearennsetnsesasesnesssessasssnnnsonsessenasssnssnsseyssnsnnnssmnssnsssensstonresssednasseedssseesonsnossasareeanssonsvonsrensesis v
I T O T U i ONT cenieieee i eiomcorareonsosraoersotsmns nmshnsetansasnsmsanassass ot sassntssnsnsstnnasnssssent asssanssnsssssssrsssssn msretnsnsesstnvasmvasrsnnnns vi
1 T 0= 1 o7 1
2 N O A VO T OIS ... cceceicricancresssraresseresnremseranssrssremesyaesssssessoenssssanssssssnnsnsressossneessoensursnssnsnnnne 1
3 Terms, definitions and abbhreviated eI, e irer s rsraarassssseenrermtasrenessantaastsantnansnnssnnsnannannnsnnn 2
4 0w T YT 1 o 1 2
5 Unified diagnostic services (UDS) applicability to OSImodel ... rrcemrreicecririicevnrsciranereans 2
6 Application and SesSsIioN laYers v vimrricersrnorermenransesrnssenssens P 2
6.1 APPlICAtION |aYer SOIVIC S e icrt e rnermmcemecsm s s re s mmanavsmsmssscsae s anssmessamsscnmess smnssnanmsnsrsnssarsas 2
6.2 Application layer protocol...... . cicciciiiniscaiinisisenisssrissreinesssnsvar seteamtersutsatrearmrarareanrannrrarnraanreanrnyn 2
6.3 Application [ayer and diagnostic session management timingcccccccimesenecsemncrnairnesennsesnmmnsssenss 2
oI e I €7 =1 ¢ 1= - T O y
6.3.2 Application layer timing parameter definitlons ... s 4
6.3.3 Session [ayer timing parameter definitionNS ... et e n et e e s 6
6.3.4 Client and server timer resoUrce reqUIireMeENt S .. e ricvearrreassscsanmeersmaesenrsosnsesneessesansnrssnsruoaree 6
6.3.5 Detailed timing parameter deSCriPHIONS ..cucivivcrrrvesiirerremranrrarervarsvsarrssrsisastoansssassanssnnsssnasnnnssassmssannnss 9
ST T SN =1 o) gl £ = 1 Lo 1] £ o 27
7 [\ [=) a7V 00d o T P] 1 =1 q & o T O O 29
7.1 LT L= LT 3000 T 7=)6 (o] ; R 29
7.2 FlowControl N PCl parameter definttion....... et ss e e s mn s s e 29
7.3 Mapping of A PDU onto N_PDU for message transSmisSSION.......cciccivesenimccimsiiresssssssnsssnssarassensess 29
7.4 Mapping of N PDU onto A PDU for message reCeplion v viiniieanirseraistismmsmsmssesssisaranneasenas 29
8 Standardized diagnostic CAN identifiers ... ircrcericr i cirerecrrcrasessescassesenearneanssan e isassarnanse 30
8.1 Legislated 11 hit OBD CAN identifiers.. ... et e s e s 30
8.2 Legislated 29 hit OBD CAN identifiers . et cnccna s ee e ras s se s s e n e me e menas 30
8.3 Enhanced diagnostics 29 bit CAN identifiers e e 30
B.3. 1 GEN T NI OITNI AL O oo ceeiiciiee i ternestesesnssresnssansennasranssasnsansossans sansessusnnmns st ashsressesss assossesssnsranvenss 30
8.3.2 Structure of 29 bit C_AH o L= 4 10 =1 S 31
B.3. 3 S UCTUTE Of AU S . eciieeiercriecrenrarenncnssmremnroesmmmnmomsmmsemmmsmm e mrnommmosmemmommesmamssamsmsssmssasesasmssramnsanannee 33
8.3.4 Message retrieVal.... oo rmm s mmeseeanbessssasasasanssesussmassannanas 35
= 28-S o 111 4 {4 T O U PO OO 36
9 Diagnostic services ImMplementation.. ..t csetr et e reens e s s s s s ansrnss e s s s e sussanass 40
9.1 Unified diagnostiC ServIiCeS OVeIVIOW ...t cisci s sesms et rassaanassassstastantasssnmansassananssannssssassannsen 40
9.2 Diagnostic and communication control functional Unif ... e st sre s s e 42
9.21 DiagnosticSessionControl (10 hexX) ServiCe ... et creec s st st s i s ae s 42
9.2.2 ECUReESEt {11 ReX) SOIVIC O eeicrieccciimccrimcee e iremoecrs e s amensm e smana semanmanssnassn s mR s s ma s amanna R s annma s 42
9.2.3 SeCUNIYyACCESS (27 NeX) SOIVIC ittt imsres s s ae s e san s casnstanssms s aonnasaanastnassEns s nansanasstenarase 43
9.24 CommunicationControl (28 heX) ServiCe ...ttt crm e s cmn s eesa s s s rnesn e s ra mmsa nous 43
025 TesterPresent (3E heX) ServICCuimmimuirciminirimsisiimssscisessarsesiseisasssasesricsassntiosansssmnesssnnsnysonn 43
926 SecuredDataTransmission (84 hexX) SerVICe. . ittt ass s nantarsacasermae s ana s nsnansmnsanas 44
9.27 ControlDTCSetting (B8 NeX) SOIVIC . o tcttectvro e e srsransmesvssererss e manasesssamsensnsmnasns ans 44
9.28 ResponseOnEVeNnt (B6 NEX) SEIVICE ... e cerereccerersesvvarressravssensssanm s asssmansasmassasanannanns 44
9.29 LINKCOMIOl (87 heX) SOIVIC O et cre e ee e rsemcm s macmae s aasena s ncanssasassevsnnnnns s seetmns enemann e ands 47
9.3 Data transmisSION fUNCIHONA] NI oottt i ens e smes ame s ammesems amas mamssamsmsnesssassnsatnessssnanespans 47
9.3.1 ReadDataByldentifier {22 ReX) ServiCe. ... creerisrsssseesssasersensseanseanatsrsrresssarsasrassnsunasans 47
9.3.2 ReadMemoryByAddress (23 heX) SeIVICe .vcrrerirermssvertomasesisassasniresssssunsrammsranras runssnasmnennsssssssanssms 47
9.3.3 ReadScalingDataByldentifier{24 heX) SerViCe . i iiiserrmssnirmnsssssssenssssrasassasssesanssasanssssassssasanenss 48
Cotyright Intamational Organization for Standardzetion IS reserved If

Reproduced by IHS under §censa with 150
No sprodurction o networking paemmittad without Reense from IHS

Mot for Resale

ISO 15765-3:2004(F)

9.34 ReadDataByPeriodicldentifier {2A heX)} SEIVICe........ e ceeeeceecr e cmnerrere s sasan s n st et e e e e 43
9.3.5 DynamicallyDefineDataldentifier (2C hexX) ServiCe.. ... e crrerr s rr et e e m e s 54
9.3.6 WriteDataByldentifier (2ZE ReX) SerVICe ... ettt e e s s resme s m s s s na e s nea s ot mmm e mm s ens 54
9.3.7 WriteMemoryByAddress (3D heX) SEIVICE..........cccvcimineiencisarncssarsnnssarsessssnnsnssenasmsecmsrns asanseestvessens es 54
9.4 Stored data transmisSion fUNCLIONAL UNIL et s rsan s s an s s b e e ens 54
9.41 ReadDTCINformation (19 NeX) SEIVICE errerveraevervamsarasrsranassusnman s nes s mmnnneasennanans 54
9.4.2 ClearDiagnosticinformation (14 heX) SerViCe ... i iieeicri e rieeemre e s asesenssesnassssersnnssnansrieenmmmenne 56
9.5 Input/Output control functional UNit........ ... et re e ean et e e me s r s nearanannn 56
9.5.1 InputOutputControlByldentifier (2F HeX) ServiC e et rereecsersmmssesse s am s rannen e aenncm s 56
9.6 Remote activation of routine functional UNit ... crreersre e resseannm s rerammm e e eeaenaraee 56
9.6.1 RoutineControl {31 ReX) SerVICe . iericiirionirsssarersmsussusnemesranmnssrnsnsssnnnassenennssasnnassssanessessenssersenasmnse 56 »
9.7 Upload/Download fURCHONAL UM ... eee e et ceeresim s oneevenn s e s s e mnem s s s mam s s e e mmcmmmmen 57
9.7.1 RequestDownload (34 ReX) SEIVICE ... eeereiee e ieceeeeracetmm e emme s ensssssarersesonassnnasas conmmemmmmnen 57
9.7.2 RequestUpload (35 NeX) SeIVICE . rrcrerrretven v s s s e s v e s e me e men e s nas 57 ;
9.7.3 TransferData (36 NEX) SOIVICE ... cretiiere e srerresrras e s s assrasnass e tessessons mnsanansmssasnsnerssnssarensas 57
9.74 RequestTransferEXit (37 heX) ServiCe i icieiie e cecrimer e eme s s ansrrasas s sessssremtrnmssreesmesnnnense 57
10 Non-volatile server memory programmiig PrOCESS.....cuuuiaiiscsssesssssasacsacineassamsnerseoserss sannsnensanssnasons 58
10.1 General iNTOTMALION ...t cete et e reescmee s e e messmn s e osrensasssnn s s aansassam sk seme s mmmmmmecmn s 58
10.2 Detailed programming SBQUENCE...............ceocciimeimeacnnenonenssesnronsnertessanmsssesssssnnsrsssossmsnmmmoemmmmeemnesnreenes 61
10.2.1 Programming phase #1 — Download of application software and/or application data............... 61
10.2.2 Programming phase #2 — Server configuration...........eceiirevsiienenmscmmiiinesncimeerreeareressseesesasssnnsssas 66
10.3 Server reprogramming reqUIFEMENES.........cccivciieinieermnrciiiseneersartonersensesonssssessasassansemmmermsnsssssssessesmmeres 69
10.3.1 Programmable servers and their Categories ... erimiiiiiireresrrrermsrmerscseeenresassnermeeeensensesassnsranssanas 69
10.3.2 Requirements for all servers to SUDPOIt ProgramimMing.....ccieeisciiersericssarsnemnennneenemmecnsensseneanasmssee 70
10.3.3 Requirements for programmable servers to support programmingccoooeeecerreerverersenseenmnnrrsnes 70
10.3.4 Software, data identification and fingerPrintS. ...t ee s s e rr e s e e 74
T10.3.5 SOIVEr FOULINE GCCESES e iiirteiremitiiis e esreesaeratas s bt s annn e s srsemsmmnssaeenaessssessomsstsanssssssananmmnsssseansennrmrsesnmmnn 77
10.4 Non-volatile server memory programming message flow eXamples ...oociveiimeememrieeeicnesenessennans 78
10.4.1 General iINfOorMAtION .t ree e s e s s mma e s e e aassn s s osaesronnsbres annnnnmasserannnansssansasnnsn 78
10.4.2 Programming phase #1 — Pre-Programming St ... cceeecrrrrensesssessassersasensasssossmsmeeemcmneseree 78
10.4.3 Programming phase #1 — ProgramiminNg Ste D ... oo cee e vem e s e srssesram s ema s mcm e ommeemmm e 79
10.4.4 Programming phase #1 — Post-Programming Step...... o oeereemcires e s anascausa b amm e e reeans 86
Annex A (normative) Network configuration dataldentifier definitionsccecceiee i cciiecccicr e e e 87
=21 0T T T £ =T+ 1) VUSSR 92
Copyright Imermational Organization for Standardzation © 150 2004 — All rights reserved

Reproduced by IHS under cenca with 150
No reproduction of networking parmitied withaut Reense from [HS Not for Resals

ISO 15765-3:2004(E)

Foreword

ISO (the International Organization for Standardization) is a wortdwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through I1SO
technical committees. Each member body interested in a subject for which a technical committee has been
- established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in haison with IS0, also fake part in the work. |SO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

nternational Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2,

The main task of technical committees is to prepare International Standards. Draft Internationa! Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Aftention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. 1SO shall not be held responsible for identifying any or all such patent rights.

ISO 15765-3 was prepared by Technical Committee 1SO/TC 22, Road vehicles, Subcommittee SC 3,
Electrical and electronic equipment.

ISO 15785 consists of the following parts, under the general title Road vehicles — Diagnostics on Controller
Area Nefworks (CAN).

- Part 1: General information

— Part 2: Network layer services

— Part 3: Implementation of unified diagnostic services (UDS on CAN)

— Part 4: Requirements for emissions-related systems

Cm!’-ightl . F |qn§nna ANl Jghts resewed v
Reproduced by IHS under fcanse with 180
No reproduction or networking permithed withvout Besnss rom 1HS Not for Resals

ISO 15765-3:2004{E)

Introduction

This part of ISO 15765 has been established in order to enable the implementation of unified diagnostic

services, as specified in ISO 14229-1, on controller area networks (UDS on CAN).

To achieve this, it is based on the Open Systems Interconnection {OSI) Basic Reference Model specified in
ISO/IEC 7498 and ISO/IEC 10731, which structures communication systems into seven layers. When mapped
on this model, the services specified by 1SO 15765 are divided into

— unified diagnostic services (layer 7), specified in this part of ISO 15765,

— network layer services (layer 3), specified in iSO 15765-2,

-— CAN services (layers 1 and 2), specified in ISO 11888,

in accordance with Table 1.

Table 1 — Enhanced and legislated OBD diagnostic specifications applicable to the OS! layers

Open Systems

Vehicle manufacturer enhanced

Legislated on-board

Interconnection diagnostics diagnostics
(OS]1) layers {OBD)

Diagnostic application User defined ISO 150315

Application layer ISC 15765-3 1ISO 156031-5
Presentation layer N/A N/A
Session layer SO 15765-3 N/A
Transport layer N/A N/A

Network layer 1ISO 15765-2 1ISO 167654

Data link layer 1SO 118581 1ISO 15765-4

Physical layer User defined ISO 157654

Coprigh *’{':m;w“ﬁ?m _ © 1SO 2004 - Al rights reserved
Not for Reeale

No reproduction of networking permitted without icense from [HS

INTERNATIONAL STANDARD ISO 15765-3:2004(E)

Road vehicles — Diagnostics on Controller Area Networks
(CAN) —

Part 3:
Implementation of unified diagnostic services (UDS on CAN)

1 Scope

This part of ISO 15765 specifies the implementation of a common set of unified diagnostic services (UDS), in
accordance with 1SO 14229-1, on controller area networks (CAN) in road vehicles as specified in 1ISO 11898.
It gives the diagnostic services and server memory programming requirements for all in-vehicle servers

connected to a CAN network and external test equipment. It does not specify any requirement for the in-
vehicle CAN bus architecture.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

1ISO 14229-1, Road vehicles — Unified diagnostic services (UDS) — Part 1. Specification and requirements

ISO 11898-1, Road vehicles — Controller area network (CAN) — Part 1: Data link layer and physical
signalling

ISO 11898-2, Road vehicles — Controller area network (CAN) — Part 2: High-speed medium access unit

IS0 11898-3, Road vehicles — Controller area network (CAN) — Part 3: Low-speed, fault-folerant, medium
dependent interface)

ISO 15031-6, Road vehicles — Communication between vehicle and external equipment for emissions-refated
diagnostics — Part 6: Diagnostic trouble code definitions!)

1ISO 15765-1, Road vehicles — Diagnostics on controlfer area network (CAN) — Part 1: General information

?} 1ISO 15765-2, Road vehicles — Diagnostics on controlfer area nefwork (CAN) — Part 2: Network layer
! servicel)

1180 15765-4, Road vehicles — Diagnostics on controller area network {(CAN} — Part 4: Requirements for

emissions-related systems!)

SAE J1939-21, Recommended practice for a serial control and communications vehicle network — Data link
layer?)

1) To be published.

2) Society of Automotive Engineers standard.

Copytight Intemational Organization kor Standardzanon. JNLS reserved 1
Reproduced by IHS under icense with 150
Mo reproduction or networking permitind withow! icensa fiom HS Not for Resale

1ISO 15765-3:2004(E)

3 Terms, definitions and abbreviated terms

For the purposes of this document, the terms and definitions given in 1SO 14229-1, 1SO 15765-1 and
SO 15765-2 and the following abbreviated terms apply.

DA destination address
1D identifier

DLC data length code
GW gateway

LSB least significant bit
MSB most significant bit

NA network address
SA source address
SM subnet mask

TOS type of service

4 Conventions

This part of ISO 15765 is based on conventions defined in [SO 14229-1, which are guided by OSI Service
Conventions (see ISO/TR 8508) as they apply for diagnostic services.

5 Unified diagnostic services (UDS) applicability to OSI model

See Figure 1.

6 Application and session layers

6.1 Application layer services

This part of ISO 15765 uses the application layer services as defined in 1SO 14229-1 for client-server based
systems to perform functions such as test, inspection, monitoring, diagnosis or programming of on-board
vehicle servers.

6.2 Application layer protocol

This part of ISO 15765 uses the application layer protocol as defined in ISO 14229-1.

6.3 Application layer and diagnostic session management timing

IMPORTANT — Any N_USData.indication with <N_Result> not equal to N_OK that is generated in the
server shall not result in a response message from the server application.

6.3.1 General

The following specifies the application layer and session layer timing parameters and how they are handled
for the client and the server.

2 o © 150 2004 - All rights reserved
Reproduced by FHS under kcense with 150
NG reproducion of networking permitted without kCenga from |HS Not or Resale

—_—— e ——

ISO 15765-3:2004(E)

Application

Diagnostic application

Application layer

e— PR B kil ok E——

Network layer

_____.__'_.________._l[

SO 14229-1
Unified diagnostic services (UDS)
Part 1: Specification and requirements

1ISO 15765-3
Diagnostics on CAN
Part 1; Implementation of united diagnostic
services (UDS)

SO 15765-2

Diagnostic on CAN
Part 2: Network layer services

Data link layer

Physical layer

e J[...... _

150 11898-1
Controler Area Netwoark (CAN)
Part 1: Data link layer and physical signalling

LR

————]—

User defined
{e.g. ISO 11888-2, ISO 11898-3)

I

| Physical media

Figure 1 — Implementation of UDS on CAN in OS] model

The following communication scenarios shall be distinguished from one another:

a) physical communication during

1) default session, and

2) non-default session — session handling required;

b} functional communication during

1) default session, and

2) hon-default session — session handling required.

For all cases, the possibility of requesting an enhanced response-timing window by the server via a negatwe
response message, including a response code 78 hex, shall be considered. -

The network layer services as defined in 150 15765-2 are used to perform the application layer and diagnostic
session management timing in the client and the server.

Copyright Intemational Mﬁ%’ghm reserved
Reproduced by 1HS under icanse with 150
No reprodoction or networking pemmitted without Bcansa fom |HS

Nt ior Resals

ISO 15765-3:2004(E)

6.3.2 Application layer timing parameter definitions

The application layer timing parameter values for the default diagnostic session shall be in accordance with

Table 2.
Table 2 — Application layer timing parameter definitions for the defaultSession
Timing Description Type Min. Max.
parameter
Timeout for the client to wait after the successful| Timer reload
fransmission of a request message (indicated via value P2caN server max
P2:AN Chient N_USData.con) for the start of incoming response + N/A 2
- messages (N_USDataFirstFrame.ind of a multi-frame AP2¢cap
message or N_USData.ind of a SingleFrame message).
Enhanced timeout for the client to wait after the reception | Timer reload
of a negafive response message with response code 78 value po*
Do hex (indicated via N_USData.ind) for the start of incoming . CAN Servel max N/A D
CAN_Client response messages (N _USDataFirstFrame.ind of a multi- ADD
frame message or N _USDataind of a SingleFrame CAN_rsp
message).
Performance requirement for the server to start with the | Performance
P2caN_Server response message after the reception of a request| requirement |0 50 ms
message (indicated via N_USData.ind).
Performance requirement for the server to start with the | Performance
Do response message after the transmission of a negative | requirement ¢ 5000
CAN_Server response message (indicated via N_USData.con) with ms
response code /8 hex (enhanced response timing).
Minimum time for the client to wait after the successful| Timer reload
transmission of a physically addressed request message value
P3caN client_Phys | (indicated via N_USData.con} with no response required P2pan Server max | N/AT
before it can transmit the next physically addressed B -
request message {see 6.3.5.3).
Minimum time for the client to wait after the successful| Timer reload
transmission of a functionally addressed request message value
{indicated via N_USData.con) before it can transmit the
P3can Client_Fune | Next functionally addressed request message in case no P2.aN server max | N/AY
response is required or the requested data is only - B
supported by a subset of the functionally addressed
servers (see 6.3.5.3).
a The maximum time a client waits for a response message to start is at the discretion of the client, provided that P2-0N client 1S

greater than the specified minimum value of P2

CAN_Client’

b The value that a client uses for P2%.,, .15 at the discretion of the client, provided it is greater than the specified minimum
value of P2* ., chant B

< During the enhanced response timing, the minimum time between the transmission of consecutive negative messages, each with
response code 78 hex, shall be 72 P2% .y sonver may With @ maximum tolerance of + 20% of P2* ., sorver max

d The maximum time a cfient waits until it transmits the next request message is at the discretion of the client, provided that for non-

default sessions the 53 timing is kept active in the server(s).

Cwmmw&m © IS0 2004 — All rights reserved
Reproduced by [HS under kcanss with 1S0)

No reproducton or networking permitted without Bcanse from FHS Mot for Resale

ISO 15765-3:2004(E)

The parameter AP2.,\ considers any system network design-dependent delays such as delays introduced by
gateways and bus bandwidth plus a safety margin (e.g. 50 % of worst case). The worst-case scenario
(transmission time necessary for one “round trip” from client to server and back from server to client}, based
on system design, is impacted by

a) the number of gateways

b) CAN frame transmission time (baud rate),

¢} CAN bus utilization, and

involived,

d) the CAN device driver implementation method (polling vs interrupt) and processing time of the network

layer.

The value of APZ2qy IS divided into the time to transmit the request to the addressed server and the time to
transmit the response to the client:

AP2can = AP2caN Req ¥ 8P2¢aN Rep

FFigure 2 provides an example of how AP2, can be composed.

client gateway # 1 gateway # 2 server
N_USDﬂtE.rEq TEC]UEEt
start
=1 N_USData.con
&PZCAN_F&eq . - -
= L | | \ N_USData.ind
o
° P2cAN server
—
S, !
)
& | |
al : ; ‘W} N_USData.req
! ! | ; N_SData.con
APZCAN_RED .y'

1 N USData.ind '
stop

Figure 2 — Example for AP2, 4y — SingleFrame request and response message

NOTE For the sake of simplicity in describing the timing parameters, in all the figures that follow it is assumed that
the client and the server are located on the same network. All descriptions and figures are presented in a time-related

sequential order.

GopyTight Inteenational Organization for Standarduzartion JN1S reserved
Reproduced by IHS under icense with ISC
Nc repmduction of networking permittad without Bcense from 1HS

Mot for Regale

ISO 15765-3:2004({E)

6.3.3 Session layer timing parameter definitions

When a diagnostic session other than the defaultSession is started, then a session handling is required which
is achieved via the session layer timing parameter given in Table 3.

Table 3 — Session layer timing parameter definitions

o Recommended Timeout
Timing

barameter Description Type timeout

ms ms

Time between functionally addressed TesterPresent (3E
hex} request messages transmitted by the client to keep a

.)) . Do, Timer
diagnostic session other than the defaultSession active in
S3cient multiple servers (functional communication) or maximum rf;?j: 2 000 ms 4 000 ms

time between physically transmitted request messages o a
single server (physical communication).

Time for the server to keep a diagnostic session other than | Timer
S3semver the defaultSession active while not receiving any diagnostic | reload N/A o 000 ms
request message. value

Furthermore, the server might change its application layer timings P2-an server @Nd P2*:AN server WheN
transitioning into a non-default session in order to achieve a certain performance or to compensate restrictions
which might apply during a non-default diagnostic session. The applicable timing parameters for a non-default
diagnostic session are reported in the DiagnosticSessionControl positive response message in the case

where a response is required to be transmitted {(see service description in 9.2.1) or have to be known in
advance by the client in case no response is required to be transmitted. When the client starts a non-default

session functionally, then it shall adapt to the timing parameters of the responding servers.

Table 4 defines the conditions for the client and the server to start/restart its S3¢io/S3gapver timer. For the
client a periodically transmitted functionally addressed TesterPresent (3E hex) request message shall be
distinguished from a sequentially transmitted physically addressed TesterPresent (3E hex) request message,
which is only transmitted in case of the absence of any other diagnostic request message. For the server
there is no need to distinguish between that kind of TesterPresent (3E hex) handling. Furthermore, Table 4
shows that the S3g,.er timer handling is based on the network layer service primitives, which means that the
S3gerver limer is also restarted upon the reception of a diagnostic request message that is not supported by
the.server.

6.3.4 Client and server timer resource requirements

The timer resource required for the client and the server to fulfil the above given timing requirements during
the default session and any non-default session shall be in accordance with Tables 5 and 6 list. During a non-
default session, the additional timer resource requirements given in Table 6 shall apply for the client and the
Server.

Copyright Insmaionsl Organization for Srandantzation © 1SO 2004 — Al rights reserved

Reproduced by IHS under icante with IS0
Ne reproduction or networking permitied without Beanse from HS Not for Resals

ISO 15765-3:2004(E)

Table 4 — Session layer timing start/stop conditions for the client and the server

Timing Action Physical and functional communication, Physical communication only,
Parameter using functionally addressed, using a physically addressed,
periodically transmitted sequentially transmitted
TesterPresent request message TesterPresent request message
N_USData.con that indicates the
. completion of the DiagnosticSessionControl
N_USDgta.cc;n t_hat -IndICE'EES the (10 hex) request message in case no
{nitial completion of the UmgnnsthgsgmnCnntrm response is required.
tart {10 hex) request message. This is only true - — -
St for if the session type is a non-default | N_USData.ind that indicates the reception
SasSion. of the DiagnnstichssmnCnntrol (10 he:f:)
response message in case a response Is
required.
S3ciient N_USDatacon that indicates the
completion of any request message in case
N USData.con that indicates the | MO response is required.
completion of the functionally addressed | N_USData.ind that indicates the reception
Subsequent _
TesterPresent (3E hex) request message, | of any response message in case a
start L . . : i
which is transmitted each time the S3¢jient | response is required.
timer times out. N_USData.ind that indicates an error during
the reception of a multi-frame response
message.
N_USData.con that indicates the completion of the transmission of a
DiagnosticSessionControl positive response message for a transition from the default
initial start session to a non-default session, in case a response message is required.
nitial sta
Successful completion of the requested action of the service DiagnosticSessionControl
(10 hex) for a transition from the default session to a non-default session, in case no
response message Is required/allowed.
Subsequent N_USDataFirstFrame.ind that indicates the start of a multi-frame request message or
d N_USData.ind that indicates the reception of any SingleFrame request message. If the
stop C
defaultSession is active, the S3¢qn e, timer is disabled.
N_USData.con that indicates the completion of any response message that concludes a
S3gerver service execution (final response message) In case a response mMessage is
required/allowed to be transmitted (this includes positive and negative response
messages). A negative response with response code 78 hex does not restart the S3¢,,
timer.
Subsequent | Completion of the requested action {service conclusion) in case no response message
start (positive and negative)} is required/allowed.
N_USData.ind that indicates an error during the reception of a multi-frame request
message.
See 6.3.5.4 for further details regarding the S3g,,, ., handling in the server when the server
is requested to transmit unsolicited response message such as periedic data or responses
based on an event.

[~ IaFalalatel| AH =

Copyright intemational Organization for Standardizetion. AN1S (eserved
NO mproduction of networking permitied without icense from [HS

—— ——

Mot for Resale

—— — ——

- e ————

ISO 15765-3:2004(E)

Timing
parameter

P26AN_Client

Table 5 — Timer resources requirements during defaultSession

Client server

A single timer is required for each logical
communication channel (physical and
functional communication), e.q. each point-to- N/A
point communication requires a separate
communication channel.

PzCA N_Server

An optional timer might be required for the
enhanced response timing in order to ensure that
N/A subsequent negative response messages with
response code 78 hex are transmitted prior to the
expiration of P2*

CAN_Server
o A single timer is required per logical physical N/A
CAN_Physical | communication channel.
A single fimer is required per [ogical functional
PBCAN_Functinnal NA

communication channel.

Table 6 — Additional timer resources requirements during non-defaultSession

Timing Parameter Client Server

S SCHEH‘!

A single timer is required when using a periodically
transmitted, functionally addressed TesterPresent
(3E) hex request message to keep the servers in a N/A
non-defaultSession. There is no need for additional
timers per activated diagnostic sessions.

A single timer is required for each point-to-point
communication channel when using a sequentially
transmitted, physically addressed TesterPresent
(3E) hex request message to keep a single server in
a non-defaultSession in case of the absence of
another diagnostic request message then.

SgEerver

Q

A single timer is required in the server,
N/A because only a single diagnostic session
can be active at a time in a single server.

Copyright Intemational Organization for Standardization © 1S0 2004 — All rights reserved

Reproduced by 1HS under icense with 150

N reproduction or networking permited without Fcense fronT iHS Not for Roesla

ISO 15765-3:2004(E)

6.3.5 Detailed timing parameter descriptions
6.3.501 Physical communication

6.3.5.1.1 Physical communication during defaultSession

Figure 3 graphically depicts the timing handling in the client and the server for a physically addressed request
message during the default session.

client server
! |
|

N_USDatareq —-@ I
@— N USDataFF.ind
tart |
N _LISData.con —@ > ‘ @ N_USData.ind

request

PzCAN_Semer

l e N ta.re
PZCAN_CHent start of response O_ _UsDha q

N USDataFF.ind @ 1.
B stop
N USData.ind _® SJ @ UShaocon
| op |

response

9 The diagnostic application of the client starts the transmission of the request message by issuing a N_USData.req to
its network layer. The network layer transmits the request message to the server. The request message can either be a
single-frame message or a multi-frame message.

b In the case of a multi-frame message, the start of the request is indicated in the server via N_USDataFF.ind that is
issued by its network layer.

C The completion of the request message is indicated in the client via N _USData.con. When receiving the
N_USData.con the client starls its P2.,y client IiMer, using the default reload value P2qay yierg- ThE Value of the
P2:an criert timer shall consider any latency that is involved based on the vehicle network design (communication over
gateways, bus bandwidth, etc.). For simplicity, the figure assumes that the client and the server are located on the same
network.

d The completion of the request message is indicated in the server via the N_USData.ind.

€ The server is required to start with its response message within P2:an senver 8fter the reception of N_USData.ind.
This means that, in the case of a multi-frame response message, the FirstFrame shall be sent within P2:aN server @Nd, for
single-frame response messages, that the SingleFrame shall be sent within P2, cener B

' In the case of a multi-frame response message, the reception of the FirstFrame is indicated in the client via the
N_USDataFF.ind of its network layer. When receiving the FirstFrame indication, the client stops its P2, cpernt timer.

9 The network layer will generate a final N_USData.ind in case the complete message is received or an error occurred
during the reception. In case of a single-frame response message, the reception of the SingleFrame is indicated in the
client via a single N_USData.ind. When receiving this single frame indication, the client stops its P25,y cpent tiMer.

B The completion of the response message is indicated in the server via N_USData.con.

Figure 3 — Physical communication during default session

| _ ﬂllr‘:ﬂhﬁgﬁl A .:ghts fESEWEd 9
Reproduced by IHS under fcense with 15O
Mo reprodaction oF networking pemmitted without cense from [HS Mot for Resale

————— —————

ISO 15765-3:2004(E)

6.3.6.1.2 Physical communication during defaultSession with enhanced response timing

Figure 4 graphically depicts the timing handling in the client and the server for a physically addressed request
message during the default session and the request of the server for an enhanced response timing (negative
response code /8 hex handling).

client server
|
Pending List | ;
= empty N_USData.req —@ '
PZCAN_CIient 7 - - - a @ N_USDataFF.ind
S
o
start
N_USData.con —@ @—- N_USData.ind
P20AN_Sewer .
!
P9 _ @ start of response ®_ N_USBata.req
CAN_Client g 0
2O
O
. Z
Pending List 22
_ . | c
=ECU#1 N _USData.ind @ stop | start @ N_USData.con

x*
P2 CAN_Client

]
P2 CAN_Server

*
P2 CAN Client

!
start of response h N_USIDEta.req

Remove N_USDataFF.ind —@ - ‘ - ‘
ECU # 1 stop |

from Pending List [I |

Pending List l * ‘
= empty N_USData.ind @ Stop @ N _USData.con
| |

PzCAN_CIient | I

2 The diagnostic application of the client starts the transmission of the request message by issuing a N_USData.req to
its network layer. The network layer transmits the request message to the server. The request message can either be a
single-frame or multi-frame message.

b in the case of a multi-frame message, the start of the request is indicated in the server via N_USDataFF.ind that is
issued by its network layer.

¢ The completion of the request message is indicated in the client via N_Usdata.con. When receiving the
N_USData.con, the client starts its P2,y e timer, using the default reload value P2,y clert- The value of the
PZean ciient timer shall consider any latency that is involved based on the vehicle network design {e.g. communication
over gateways, bus bandwidth, etc.). For simplicity, the figure assumes that the client and the server are located on the
same network.

d The completion of the request message is indicated in the server via N_USData.ind.

response

Wmﬂmamgwmhsmm ©® ISO 2004 — All rights reserved
Reproduced by IHS under icense with (50
No reproduction or networking permitted withowt Boense from [HS Not for Resale

1ISO 15765-3:2004(E)

© The server is required to start with its response message within P2p,y ganer after the reception of N_USData.ind.
This means that, in the case of a multi-frame response message, the FirstFrame shall be sent within P2, AN _Server and, for
single-frame response messages, that the SingleFrame shall be sent within P2, gepver-

f' In case the server cannot provide the requested information within the P2,y e FESPONse timing, it can request an
enhanced response timing window by sending a negative response message including response code 78 hex. Upon
reception of the negative response message within the client, the client network [ayer generates a N_USData.ind. The

reception of a negative response message with response code 78 hex causes the client to restart its P2,y ey timer,
but using the enhanced reload value P2*c N cjient:

9 The server is required to start with its response message within the enhanced P2¢y gerver (P2*caN server) following
the N_USData.con of the transmitted negative response message. In case the server can still not provide the requested

information within the enhanced P2*.,\ genvep then a further negative response message including response code 78 hex
can be sent by the server. This will cause the client to restart its P2.,n ooy timer, using the enhanced reload value

P2, AN_Client For simplicity, the figure only shows a single negative response message with response code 78 hex

h Once the server can provide the requested information (positive or negative response other than response code 78
hex), it starts with its final response message.

I In the case of a multi-frame final response message, the reception of the FirstFrame is indicated in the cllent via the

N_USDataFF.ind of the network layer. When receiving the FirstFrame indication, the client stops its P2:aN ciient tiMeT.

) The network layer of the client will generate a final N_USData.ind in case the complete message is received or an
error occurred during the reception. In the case of a single-frame response message, the reception of the SingleFrame is
indicated in the client via a single N_USData.ind. When receiving this single-frame indication, the client stops its
P2¢aN_client M.

K The completion of the transmission will also be indicated in the server via N_USData.con.

Figure 4 — Physical communication during non-default session — Enhanced response timing

6.3.5.1.3 Physical communication during a non-default session

6.3.5.13.1 Functionally addressed TesterPresent (3E hex) message

Figure 5 graphically depicts the timing handling in the client and the server when performing physical
communication during a non-default session (e.g. programmingSession) and using a functionally addressed,

periodically transmitted TesterPresent (3E hex) request message that does not require a response message
from the server.

The handling of the P2-an client @819 P2can server timing is identical to the handling as described in 6.3.5.1.1
and 6.3.5.1.2. The only exception is that the reload values on the client side and the resulting time where the
server shall send its final response time might differ. This is based on the transition into a session other than
the default session where different P2can client iming parameters might apply (see DiagnosticSessionControl
(10 hex) service in 9.2.1 for details on how the timing parameters are reported to the client).

= N Bty

Copyright International Organization for Standanization JNLS reserved 11
RMMIHSMMMEQ
WO raprocuction of networking permitted without kicense from IHS Mot for Resale

ISO 15765-3:2004(E)

client

N_USData.req —@
|

server

N_USData.ind

| ™
N_USData.ind
e
@
N_USData.req — ,__E
{0 Qo th
= E o
T oT =
L D@ >
m‘.’:z.ﬂ
> QL o
- O
Q.5 » D
e mﬂ
2P c
2292
o 2
- 55 ¥
' > D 0
‘ c = w =
< 27T 3

(N_USData.ind)

i /
@ N_USIData.can

N_USData.ind
|

0%
| 0g
start start
N_tSData.con —@ | l @—
‘ PZCANMCIient PZCAN_FSewer |
! ., | Stért of response @ N_USData.req
£)]
‘ S3cy B O
i r ient (é} %
€L
T start
N_USData.ind sﬂ!:; > e
N_USData.req S3server
| -
; § ! h
‘ 3. stop
i v
start
N_USData.Cﬂn ‘ ,
|
: P2ChN_Ctient PZCAN_Eerver
start of response
N_USDatafFF.ind Stop
|
!
N_USData.req —@timeout -)
\ | |2
EEL 0
‘ o Q.
\ 1
start A
N_USData.con @ @-
l start
N_USData.ind
S3client S3server
Y
N_USData.req _@time o -
| S
l Sn
OF
. -
| start =
N USData.con —@ o !
start

AN

A 7}
Copryrignt Intemnational Osganization for Standardization
Rapmducad try IHS under icanse with 150
Mo reproduction or networking parmitted] without bcense from IHS

Mot for Recake

*

-

© IS0 2004 — All rights reserved

ISO 15765-3:2004(E)

2 The diagnostic application of the client starts the transmission of the DiagnosticSessionControf (10 hex} request
message by issuing a N_USData req to its network layer. The network layer transmits the request message to the server.

b The request message is a single-frame message. its completion is indicated in the client via the N_USData.con. Now
the response timing as described in 6.3.5.1.1 and 6.3.5.1.2 applies. The generated N_tUSData.con in the client causes the
start of the 53, timer (session timer).

© The completion of the request message is indicated in the server via the N_USData.ind. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.

9 For the figure given, it is assumed that the client requires a response from the server. The server shall transmit the
DiagnosticSessionControl (10 hex) positive response message.

€ The completion of the transmission of the response message is indicated in the server via N_USData.con. Now the
server starts its S3g, ¢, timer, which keeps the activated non-default session active as long as it does not time out. it is
the client’s responsibility to ensure that the S35, ., timer is reset prior to its timeout to keep the server in the non-default
SESSIoN.

' Once the S3;., timer is started in the client, this causes the transmission of a functionally addressed TesterPresent
(3E hex) request message, which does not require a response message, each time the 83, timer times out.

9 Upon the indication of the completed transmission of the TesterPresent (3E hex) request message via N_USData.con
of its network layer, the client once again starts its S3,,.,4 timer. This means that the functionally addressed TesterPresent
(3E hex} request message is sent on a periodic basis every time 83, times out.

N Any time the server is in the process of handling any diagnostic service, it stops its 53¢, timer.
I When the diagnostic service is completely processed, then the server restarts its S3genver IMer. This means that any
diagnostic service, including TesterPresent (3E hex), resets the S3..,., timer. A diagnostic service is meant to be in
progress any time between the start of the reception of the request message (N_USDataFF.ind or N_USData.ind receive)
and the completion of the transmission of the final response message, where a response message is required, or the
completion of any action that is caused by the request, where no response message is required {point in time reached that

would cause the start of the response message).

] Any TesterPresent (3E hex) request message that is received during processing another request message can be
ignored by the server, because it has already stopped its S3g,,., timer and will restart it once the service that is in
progress is processed completely.

Figure 5 — Physical communication during non-default session — functionally addressed
TesterPresent

6.3.5.1.3.2 Physically addressed TesterPresent (3E hex) message

Figure 6 graphically depicts the timing handling in the client and the server when performing physical
communication during a non-default session {e.q. programmingSession) and using a physically addressed
TesterPresent (3E hex) request message that requires a response message from the server to keep the
diagnostic session active in case of the absence of any other diagnostic service.

= IiDd™ Pmahod Al =

Copyriatt Intemartionsal Organization for Standardzation JNIS reserved 13
Repraducad by |HS under icanse with IS0
No reproduction or networking perrnitted without kcense from [HS Mot for Resals

T T T T ee— w— w—

150 15765-3:2004(E)

SErver

@ N USData.ind

|

tart |
> T @ N_USData.con
l

; @ N_USDataFF.ind
stop |
|

N_USData.ind
|

|

: @— N_USData.ind
stop
P2 I l

N_USData.req

StTrt @— N_HUS!IJata.cnn
|

N_USData.req

17
|
| o
start
N_USData.con —@ |
, chAN_CEient P2CAN_Sewer
| !
! | Start of response ®_ N_USData.req
m]
| B8
. L8,
| tart =
sta
N_USData.ind « e)} '
| stop
I SSSeruer
N_USData.req f l
| stop
- W
, @
—
o
] o
tart
N_USData.con > |a
, PzCAN_CIient P‘?CAN%Sewer
| ‘ l start of response
N_USDataFF.ind stop D
-
| S
-
I N
‘ d
t
N_USData.ind —® Sla”
% S‘?’Eliant SSSENEI’
N_USData.req —@ ‘
- timeout
-' 5
=
i &
tart .
N_USData.con =24
I CAN_Server
PZEAN_CIient start of response

response
TP

start
N_USData.ind —@ !
\L stop

1A

for Standandization

Copyright intemational Organiration

Reaproduced by IHS urkier icensa with IS0

Nao mpaoduciion of eiworking permitied withowut Bcaense from MBS

Not for Resada

tart
S\Z @—N__USData.cnn

© 1SO 2004 — All rights reserved

—

=

ISO 15765-3:2004(E)

9 The diagnostic application of the client starts the transmission of the DiagnosticSessionControl {10 hex) request
message by issuing a N_USData.req to its network fayer. The network layer transmits the request message to the server.

b The request message is a single-frame message. lts completion is indicated in the client via the N_USData.con. Now
the response timing as described in 6.3.5.1.1 and 6.3.5.1.2 applies. The generated N_USData.con in the client does not
cause the start of the 33, timer (session timer), as it would for the case of using 2 functionally addressed and
periodically transmitted TesterPresent (3E hex) message to keep a diagnostic session alive (see 6.3.5.1.3.1).

¢ The completion of the request message is indicated in the server via the N_USData.ind. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.

d For the figure given, it is assumed that the client requires a regponse from the server. The server shall fransmit the
DiagnosticSessionControl {10 hex) positive response message.

€ The completion of the transmission of the response message is indicated in the server via N_USData.con. Now the
server starts its 53, . timer, which keeps the activated non-default session active as long as it does not time out. In the
client, the reception of the DiagnosticSessionControl (10 hex) positive response message is indicated via N_USData.ind.
This causes the start of the 53y, timer. It is the client's responsibility to ensure that the S3¢,, . timer is reset prior to its
timeout to keep the server in the non-defauit session.

T Whenever the client transmits a request message to the server (including the TesterPresent (3E hex) message), it
stops its S3p)gne tiMer.

9 The reception of either a SingleFrame or a FirstFrame of the request message stops the $3g,.., timer in the server.
The completion of the request message is indicated in the server via N_USData.ind. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.

h The completion of the response message is indicated in the client via N_USData.ind, which causes the client to start
its S35 The completion of the response message is indicated in the server via N_USData.con, which causes the
server to start its S35, . In a case where the client would not require a response message, then it shall start its S3,,._
timer when it receives confirmation of the completion of the request message, which is indicated via N_USData.con. The
server would start its S3¢, .. timer when it has completed the requested action. For simplicity, the figure shows that a
response is required.

' In case the client would not send any diagnostic request message prior {o the timeout of S3cjient then the timeout of

‘the S3pjient IIMer causes the client to transmit a physically addressed TesterPresent (3E hex) request message.

I The reception of the TesterPresent (3E hex) request message is indicated in the server via N_USData.ind. This
causes the server to stop its 53¢, ., timer. Now the response timing as described in 6.3.5.1.1 and 6.3.5.1.2 applies.

K The completion of the TesterPresent (3E hex) response message is indicated in the client via N_USData.ind, which
causes the client to start its 83, The completion of the TesterPresent (3E hex) response message is indicated in the
server via N_USData.con, which causes the server to start its S3g,, . 10 the case where the client would not require a
response message, then it shall start its S3;,.,4 timer when it receives confiration of the completion of the TesterPresent

(3E hex) request message, which is indicated via N_USData.con. The server would start its 83¢,, ., timer when it has
completed the requested action. For simplicity, the figure shows that a response is required.
Figure 6 — Physical communication during non-default session — Physically addressed
TesterPresent
Copntiht ntemational Orasization ke Srardartanton GHLS reserved 15
Reproduced by 1HS undar lcanse with IS0
No reproduction or networking parmntied without fcense fom [HS Not for Hesale

. ——————— -

o T T TR T - -

1SO 15765-3:2004(E)

6.3.5.2 Functional communication

6.3.5.2.1 Functional communication during defaultSession

Figure 7 graphically depicts the timing handling in the client and two (2) servers for a functionally addressed
request message during the default session. From a server point of view, there is no difference in the timing
handling compared to a physically addressed request message, but the client shall handle the timing different
compared to physical communication.

client server # 1 server # 2
! | |
N__USDatla.req —@ | |

| |
N_USData.con —@ ST"

functional
request

| |
, @—N_US?Et&.ind@T N_USData.ind
|

PZCAN_C“EH'[PQCAM_SEWEI' ‘ PZCAN_SENEI'"
‘ @— N _USData.req -
start of response l I
N_USDataFF.ind —@ stop 1 start " \ ‘
[PzCAN_CIient E ‘ I
| “to l start % start of response @-‘—N__USData.req
N _USDataFF.ind —@ D | et | ‘
M N .
N | p | |
N_USData.ind f | & —@—N_USData.cﬂn |
| . | -
P‘?CAN_CIiEnt it l ‘
N_USData.ind —@ ‘ ! @— N_USData.con
| timeout ‘ |

9 The diagnostic application of the client starts the transmission of a functionally addressed request message by issuing
a N_USData.req to its network layer. The network tayer transmits the request message to the servers. A functionally
addressed request message shall only be a single-frame message.

b The completion of the request message Is indicated jn the client via N_USData.con. When receiving the
N_USData.con, the client starts its P2.,y cjiemt timer, using the default reload value P2,y cliet- AS TOr physical
communication, the value of the P2,y it iMer shall consider any latency that is invoived based on the vehicle network
design (e.g. communication over gateways, bus bandwidth, etc.). For simplicity, the figure assumes that the client and the
server are jocated on the same network.

€ The completion of the request message is indicated in the servers via N_USData.ind.

d The functionally addressed servers are required to start with their response messages within P2,y gener after the
reception of N_USData.ind. This means that in case of multi-frame response messages, the FirstFrame shall be sent
within P2caN server 2Nd, for single-frame response messages, that the SingleFrame shall be sent within P2-, conver

€ In the case of a multi-frame response message, the reception of the FirstFrame from any server is indicated in the
chent via the N_USDataFF.ind of the network layer. A single-frame response message is indicated via N_USData.ind.

I when receiving the FirstFrame/SingleFrame indication of an incoming response message, the client either stops its
P2-an client WHere it kKnows the servers expected to respond and all servers have responded, or it restarts its P2,y client
timer where not all expected servers have yet responded or where the client does not know the servers expected to
respond (the client awaits the start of further response messages). The network layer of the client will generate a final

Gﬂp}r@‘lti;rﬁiﬂm Organization for Sandardizaton © 150 2004 — All rights reserved
Reproduced by IHS under Rcense with |SC
No reproduction or networking permitted without lcenae from HS Mot for Resale

ISO 156765-3:2004(E)

N_USData.ind in case the complete message is received or an error occurred during the reception. The reception of a
final N_USData.ind of a multi-frame message in the client will not have any influence on the P2, .. timer.

8 The completion of the transmission of the response message will also be indicated in the servers via N_USData.con.

Figure 7 — Functional communication during default session

6.3.5.2.2 Functional communication during defaultSession with enhanced response timing

Figure 8 graphically depicts the timing handling in the client and two (2) servers for a functionally addressed
request message during the default session, where one server requests an enhanced response timing via a
negative response message including response code 78 hex.

From a server point of view there is no difference in the timing handling compared to a physically addressed
request message that requires enhanced response timing, but the client shall handle the timing differently
compared to physical communication.

A Lvy™ mnmod F |

Copyright Intomational Organization for Standargzation. JNIS reserved 17
Reoroduced by [HS under Bcanse with SO
Mo reproduction of networking permittsd without icense from IHS Mot for Resale

ISO 15765-3:2004(E)

Pending List
= empty

P2 o =default

Pending List
=ECU#1

PzCAN_C lient

Pending List
= no change

¥
P2 CAN_Cliant

Pending List
= no change

Pending List
= empty

Remove ECU #1

from
Pending List

Pending List
= empty

P20 AN_Client

client
|
{

N USData.req

*

N_USData.con

N _USData.ind

N USDataFF.ind

L
*

N_USData.ind

N_USDataFF.ind

N_USData.ind

|
|

@

functional

request

Server #1

start
O

P2can client

_Server

! d N_USData.req

neg. response
NRC78

start of response

|

stop § start
e

L]
P2 CAN_Clent

N_LISData.con

P2 CAN_Server

P‘?EAN_Sewer

@—N_Usnata.ind—(:)—i—
PZCAM |

start of r&spnn'se

O stop { start
f

L3
P2°cAN Clent

response#2

On

|
|

stop ¢ sfart
h

P2

CAN_Client

response #1

, |
ta,
start of response @ N—USET a.req

_@

'

timeout

@— N_USData.con

server #2

+
*
1

N_USData.ind

*

N_USData.req

N_USData.con

@ The diagnostic application of the client starts the transmission of the functionally addressed request message by
issuing a N_USData.req to its network layer. The network layer transmits the request message to the servers. A
functionally addressed request message shall only be a single-frame message.

b The completion of the request message is indicated in the client via N_USData.con. When receiving N_USData.con,
the client starts its P2, cjiert timer, using the default reload value P2,y cjiert- AS for physical communication, the value
of the P2.,n clien timer shall consider any latency that is involved based on the vehicle network design (communication
over gateways, bus bandwidth, etc.). For simplicity, the figure assumes that the client and the server are located on the
same network.

€ The completion of the request message is indicated in the servers via N_USData.ind.

40

Reproduced by IHS undar Bconas with 1S5S0
No reproducion or networking permitted without Roenss from: JHS

———

© 150 2004 — All rights reserved

[ISO 15765-3:2004(E)

d The functionally addressed servers are required to start with their response messages within P2pay genver after the
reception of N_USData.ind. This means that, in the case of a multi-frame response message, the FirstFrame shall be sent
within P2.,\ server @nd, for single-frame response messages, that the SingleFrame shall be sent within P2,y geryer- IN
case any of the addressed servers cannot provide the requested information within the P2,y server fESPONSE timing, it
can request an enhanced response timing window by sending a negative response message including response code 78
hex.

€ Upon reception of the negative response message within the client, the client network layer generates a
N_USData.ind. The reception of a negative response message with response code 78 hex causes the client to restart its
P2:AN crient iMef, using the enhanced reload value P2cay cjiernt [N @ddition, the client shall store a server identification in
a list of pending response messages. Once a server that is stored as pending in the client starts with its final response
message (positive or negative response message including a response cade other than 78 hex), it is deleted from the list
of pending response messages. Where no further response messages are pending, the client re-uses the default reload
value for its P2.,y ey timer. For simplicity, the figure shows only a single negative response message Including
response code 78 hex from server #1.

I As long as there is at least one server stored as pending in the client, any start of a further response message from
any server that was addressed by the request will cause a restart of the P2,y cjient timer using the enhanced reload
value P2*can crient- (1N Figure 9, this is shown when the client receives the start of the response message of the second
server.) -

9 As for physical communication, the server that requested enhanced response timing is required to start with its
response message within the enhanced P2pan gserver (P2°can senver)- Once the server can provide the requested
information, it starts with its final response message by issuing a N_USData.req to its network layer. When the server can
still not provide the requested information within the enhanced P2*cay genver then @ further negative response message
including response code 78 hex can be sent. This will cause the client to restart its P24y cjient timer again, using the
enhanced reload value P2*c.y ciert- A NEgative response message including response code 78 hex from a server that is
already stored in the list of pending response messages has no affect to the client internal list of pending response
message.

h As described in 6.3.5.2.1, in the case of a multi-frame response message the reception of the FirstFrame from any
server is indicated in the client via the N_USDataFF.ind of the network layer. A single-frame response message Is
indicated via N_USData.ind. When receiving the FirstFrame/SingleFrame indication of an incoming response message,
the client either stops its P2nan client iN the case where it knows the servers to be expected to respond and all servers
have responded, or restaris its P2,y ciient fiMer in the case where not all expected servers have yet responded or the
client does not know the servers ta be expected to respond (client awaits the start of further response messages).

! The network layer will generate a final N_USData.ind in case any multi-frame response message is completely
received or an error occurred during the reception. This will not have any influence on the P2.,y ciient iMmer. Furthemmore,
the handling of the list of pending response messages as described above applies. -

I The completion of the transmission will also be indicated in the servers via N_USData.con.

Figure 8 — Functional communication during default session — enhanced response timing

6.3.5.2.3 Functional communication during non-default session

Figure 9 graphically depicts the timing handling in the client and two (2) servers for a functionally addressed
request message during the non-default session {(e.g. programmingSession), where one server requests an
enhanced response timing via a negative response message including response code 78 hex.

e _ 2 |r~rn§gn; Al .tghts reserved 19
Repmoucod fry 1THS under Boanss with 150
No reproduction or networking permitted withowt koanse kom IHS Mot for Rasala

e |

—_——— e — —— —_

ISO 15765-3:2004(E)

client sewTr #1 server #2
N_USData.req @]
LR
sg
[a
56
start .~ start
N_USData.con —1—(b) | [0 | (¢}~ N_USData.ind —l-@— N_USData.ind
PzCAN_CIi&nt PQCAN_Sewer PzEAN_Sewer
83... i F
3Ciient o] start () N_USDatareq
C of
% response
t tart @
N_USData.ind —————= (e)— N_USData.con
! F:'2(3‘#';!"{_'!:Iinamt . ~ ¥
o STan \d) N_USData.req
c of
i @ § response
) sto start o 1 start
N_USData.ind = P I @ N_USData.con
26AN. Client S3q S3q |
N_USData.req — O= — Brver erver |
timecout 2 ‘
. ’ =0 stop/ |
. -
| start,r—!{mmm 5 ggﬁf | s start
N_USData.con ——(g) N_USData.ind - N_USData.ind
S3CIieni 3 l
N_USData.req — S3gerver . S3gerver I
| ¥ | |
. 5 |
Pending List [start § 3 stop | @ stop |
= empty N_USData.con = L")~ N_UsData.ind LN UsData.ind
P2 :
CAN_Cliert PZ0AN_Client P2-aN Server ' P20 AN Server
worst case I
!
‘ ao] stan N_USData.req
g5l of |
PEE”SE% ‘|I_15t d’% response |
= sto start e
po* N_USDEtE.ind R ' = N_USData.con
_Clien . *
CAN_Client poe | - -
worst case CAN_Client CAN_Sarver . { N USD
ata.req
o st start starl -
ETRQE r';:é N_USDataFF.ind op ~ i of
pPo* , N_USData.req ! @ — = response
CAMN_Client timeout Qg @ !
worst case l pos ,5 o S ‘ :
Ei':,d::?-,ga rl;,;gset I o CAN_Client Ei—-* E’. | Any TesterPresent (TP)
g N_USData.con @— = = IN_USData.ind— l—t '}_USDEtﬂ-fﬂd LT:::I;EIEI: ?3::1::':?!2;
ending List PR ~\5ta '
C o change N-USData.ind , ()7 N_USData.con * will be ignored by
S3cjiant { the server(s)
start N_USData.req
f
Remove ECL #1 vy y
from N_USDataFF.ind Slop § =ten |response
Pending list j @
Pending List PZCAN_Client §
= empty | o
N_tUSData.ind | oG
P2 AN_ Client _ 3. n i I | N_USData.con
worst case N_USData.req @ | — S3server : S3sarver
| timeout i i
. So
, timeout Elm stop/ ' stop/
start i start { start
N_USData.con ——(0) 8 N_USData.ind —%’— N_USData.ind
i SSC“,Em SaSewer SSSewer I
N_USData.req I {'ﬂ = ;
- 44
| timeout c ‘
' 20- top/
= t ‘ ctan |
| sta 5 gtgﬂﬂ I _ { start |
N_USDatIa,mn dJ = N _USData.in - N_USData.ind
O {
qn --iar---'r"‘_--!r‘-!F‘i-!f‘_-_ .
Copyright intemational Organization ko Standardizetion © IS0 2004 — All rights reserved

Reproduced by IHS under icense with 1ISO
No reproduction or networking permitied without kcense from IHS Not ey Resale

1S5S0 15765-3:2004(E)

8 The diagnostic application of the client starls the transmission of the functionally addressed DiagnosticSessionControl
(10 hex) request message by issuing a N_USData.req to its network layer. The network layer transmits the request
message to the servers. The request message is a single-frame message.

b The completion of the request message is indicated in the client via N_USData.con. Now the response timing as
described in 6.3.5.2.1 and 6.3.5.2.2 applies. In addition, the generated N_USData.con in the client causes the start of the
S3¢jient timer (session timer).

© The completion of the request message is indicated in the servers via N_USData.ind. Now the response timing as
described in 6.3.5.2.1 and 6.3.5.2.2 applies.

4 For the figure as given, it is assumed that the client requires a response from the servers. The servers have {o

transmit the DiagnosticSessionControl {10 hex) positive response messages.

€ The completion of the transmission of the positive response message is indicated in the servers via N_USData.con.
The servers start their S3¢, o, timers, which keeps the activated non-default session active as long as S3¢,, ., does not
fime out. It is the client's responsibility to ensure that the S3g, ., timer is reset prior to its timeout, in order to keep the
servers in the non-default session.

' Once the 834 timer is started in the client, this causes the transmission of a functionally addressed TesterPresent
(3E hex) request message, which does not require a response message each time the 83, timer times out.

9 Upon the indication of the completed transmission of the TesterPresent (3E hex) request message via N_USData.con
of its network layer, the client once again starts its S3.;. timer. This means that the functionally addressed
TesterPresent (3E hex) request message is sent on a periodic basis every time S3q. times out.

h Any time a server is in the process of handling any diagnostic service, it stops its S3gaper timer.

' When the diagnostic service is completely processed, then the server restarts its S35, timer. A diagnostic service
iIs meant to be in progress any time between the start of the reception of the request message {N_USDataFF.ind or
N_USData.ind receive) and the completion of the transmission of the final response message, where a response message
is required, or the completion of any action that is caused by the request, where no response message is required (point in
time reached that would cause the start of the response message).

I Any TesterPresent (3E hex) request message that is received during processing of another request message can be

ignored by the server, because it has stopped its 33 timer and will restart it once the other service is processed
completely.

Server

Figure 9 — Functional communication during non-default session

The handling of the P2¢an client @Md P2caN server timing is identical to the handling as described in 6.3.5.2. ‘iE
and 6.3.5.2.2, the only exception being thaf the reload values on the client side and the resulting time the
server shall send its final response time might differ. This is based on the transition into a session other thanE
the default session where different P2 an cjient timing parameters might apply (see DiagnosticSessionControl
(10 hex) service in 9.2.1 for details on how the timing parameters are reported to the client).

6.3.5.3 Minimum time between client request messages

The minimum time between request messages transmitted by the client is required in order to allow for a
polling driven service data interpretation in the server, for example. Based on its normal functionality, a server
might process diagnostic request messages with a certain scheduling rate (e.g. 10 ms). The time for the
diagnostic service data interpretation scheduler shall be smaller than the performance requirement
P2:an server i OFder to meet the server requirements of 6.3.5 and 6.3.5.1.3.2.

The timing parameter for the minimum time between request message is divided into the following two timing
parameters.

— P3can Eunctional: This timing parameter applies to any functionally addressed request message, because it
can be the case that a server is not required to respond to a functionally addressed request message if it
does not support the requested data.

— P3caN Physicar- this timing parameter applies to any physically addressed request message where there is
no response required to be transmitted by the server (suppressPosRspMsgindicationBit = TRUE).

. . dﬁlllf‘:ﬁﬁ;lgﬂl !.Il _ghts rEaEwed 21
Rasproduced by IHS under Scensa with IS0
NG Paproduction or networking permitted without koense fom IHS Not for Recale

-

ISO 15765-3:2004(E)

In the case of physical communication where a response is required by the server, the client can transmit the
next request immediately after the complete reception of the last response message, because the server has
responded completely to the request — which means that the request is completely handled by the server.

Figure 10 graphically depicts an example of a problem that can occur during functional communication, when
the client transmits the next request immediately after it has determined that all expected servers responded
to a previous request message.

This scenaric not only applies to functionally addressed requests but also to physically addressed requests
where the client does not want to receive any response message (suppressPosRspMsglndicationBit = TRUE).

In order 1o handle the described scenarios, the minimum times P3caN physical @0 P3can Functional Petween
the end of a physically or functionally addressed request message and the start of a new physically or

functionally addressed request message, are defined for the client.

a) The value of P3pan prvsicar Will be identical to P2-an server max fOF the physically addressed server. The
timing applies to any p¥1ysical!y addressed request message in any diagnostic session {default and non-
default session} and in case no response is required by the server.

The P3caN physical imer is started in the client each time a physically addressed request message with
no response required is successfully transmitted onto the bus, which is indicated via N_USData.con in the
client. When the client wants to transmit a new physically addressed request message following a
previous request that was completely handled, then this is only allowed in case the P3 Physical fimer is
no longer active at the time the client wants to transmit the physically addressed request message. In
case P3can physical Would still be active at the point in time the client would like to transmit a new
physically addressed request message, then the transmission shall be postponed until P34 Physical 'S
timed out. B

b) The value of P3caN Functionas Will be the maximum (worst-case) value of all functionally addressed
servers P2caN server max fOr any functionally addressed request message in any diagnostic session
(default and non-default session).

The P3caN Functional timer is started in the client each time a functionally addressed request message
with response required or with no response required is successfully transmitted onto the bus, which is
indicated via N_USData.con in the client. When the client wants to transmit a new functionally addressed
request message following a previous request that was completely handled, then this is only allowed in
case the P3-an Functional timer is no longer active at the time the client wants to transmit the functionally
addressed request message. In case P3can Functional Would still be active at the point in time the client
would like to transmit a new functionally addressed request message, then the transmission shall be
postponed until P3-~an Functionat 1S timed out.

NOTE “Compietely handled” means that either no response is received in case no response is required, ail expected
responses to a functionally addressed request are received in case the responding servers are known and responses are
required or a PZcan client timeout occurred in case the responding servers are not known and responses are required.

The requirement for the server is that it shall start with its response message within P2can genver (S€€ 7.3).
This means that the diagnostic data interpretation rate of the server shall be less than P2xay Server-

- LI T R T
T kdknr A" " ra s s opg

wh'ggmmwum © IS0 2004 - All rights reserved
Reproduced by |HS under icense with SO
MNo reproduction or networking permitted without Bcense from IHS Mot for Resale

1ISO 15765-3:2004(E)

client server #1 server #2 \
{fast server) (slow server)

N USData.req —®

functional
request

start
N_USData.con —@ l | @— N_USData.ind-@— N_USData.ind

PZC,AH_EE-EM PECAN_SEF-“ET }
J N_USData.
- prver @— _UsData.req
S of
@ response
S
g diagnostic
! » ' servine
N USData.ind '
N Tta) _® stop {all expected servers responded) shsacon ?::E‘DFEtBﬁU”
| ' rate of server #2
N_USData.req —@ next request
T
o
29
L T
[1
|

start
N_USData.con —@ l @—- N_USData.ind—®— N_USData.ind

1 Pzﬂ AN_Cient _ _
| |)
| \ | N{

a4 The diagnostic application of the client starts the transmission of a functionally addressed request message by issuing
a N_USData.req to its network layer. The network layer transmits the request to the servers.

b The completion of the request message is indicated in the client via N_USData.con. The client starts its P20AN Client
timer, using the default reload value P2,y cjient

C The completion of the request message is indicated in the server via N_USData.ind. The server starts its PZCAN Sewer
timer, using the default reload value PZCAN Server

d For the request message, it is assumed that only server #1 supports the requested information, which means that
there will be no response message from server #2. Server #1 is a fast server and can immediately process the rec:ewed
request message and transmits its response within P2, AN_Server

€ The client receives the response message. This is indicated via N_USData.ind. The client only expected a respunse
message from server #1, therefore it stops its tmer P2, crient-

I Server #2 is a slow server and interprets received requests on a periodic basis (diagnostic service data interpretation
rate). In the worst-case, the last check for incoming request a message is prior to the network layer reception of the
functionally addressed request message. This would mean that the request would be stored in a buffer and processed at
the earliest the next time the scheduler checks for an incoming request. When server #2 processes the request, then it
determines that it does not need to answer, because it does not support the requested information. As shown in the figure,
this would be after the completion of the response message of server #1, and even after the completion of the next
request message transmitted by the client.

9 The client would send the next request right after the compietion of all expected response messages

h The completion of the request message is indicated in the servers via N_USData.ind, but only processed by the fast
server #1, because server #2 did not yet handle the last request.

' The completion of the new request is indicated in the client via N_USData.con.

Figure 10 — Example of critical issue when transmitting next request too early

N e e T Ta Y AN 5

Copyricht Intemational Crganization for Standasdization JNLS Teserved 23
Asproduced by [HS uhder Boansg with 1S0
Mo raproducton or networking pamitted without Boenes from EHS Mot for Recale

1ISO 15765-3:2004(E)

Figure 11 graphically depicts the P3can Functional fiMing handling for the client (based on the communication
scenario illustrated by Figure 10). In addition, Figure 11 shows the handling of a functionally addressed
TesterPresent (3E hex) request message in the client in the case in which the P3-an Eunctional timer is still
active when S3qy0 times out (request will be postponed until P3-an Functional IMes out).

S3chient
timeout

client

N _USData.req

N_USData.con

i eblee——— y rEEE——

N_USData.ind

|
|
|

N_USData.req

*

N_USData.con

20
[~
S g
QO
= O
E | -
start start
Ol |
PzCAN_Cﬁ-ent PZCAH_"SENEI*
— start
* of
@ response
-
Q
.
£
p
(H =
stop {(all expected servers responded)

PzCAN_Funcﬁnnal

server #1
(fast server)

N_USData.con

server #2 \

(sfow server)

@— N_USData.ind—@— N_USData.ind
@— N_ USData.req

diagnostic
service
data

inter-
pretation
rate of
server #2

{ next request

g9

_®

timeout
R
S8
0O o
C o
: | -
LY
start
PZCAN_CIient PECHN_SEWEF
L—()
start
I of
® | response
Fad
O
(=
o
@
{

N\ N-spataind ~ k

functional
Tester Present

delay

A

Copyright brtsmational Organization for Standardization

- USData.req —@

timeout

N_USData.con —@

Reproduced by IHS under Ecense with 150
No reproduction or networking permilied without license from [HS

stop {(all expected servers responded)

PZCAN_Fun ctional

{ next request

start

functional
Tester Present

P2

N

CAN_Functional

Not for Resale

@— N_USDEtE.ind-@-

|
|

N_USData.req

N_USData.con

|
|
|
|

@— N__USData.ind@— N_USData.ind

N_USData.ind

|

O,

diagnostic
service
data

inter-
pretation
rate of
server #2

_®

diagnostic
service
data

inter-
pretation
rate of
server #2

AN

© IS0 2004 - All rights reserved

ISO 15765-3:2004(E)

& The diagnostic application of the client starts the fransmission of a functionally addressed request message by issuing
a N_USData.req to its network layer. The network layer transmits the request to the servers.

b The completton of the request message is indicated in the client via N_USData.con. The client starts its P2

_ S CAN_Client
timer and, furthermore, its timer P3. .0 Funciional-

C The completion of the request message is indicated in the servers via N_USData.ind.

d For the request message, it is assumed that only server #1 supports the requested information, which means that
there will be no response message from server #2. Server #1 is a fast server and can immediately process the received
request message and transmits its response within P2, server-

€ Once the client receives the response message, this is indicated via N_USData.ind. The client only expected a
response massage from server #1, therefore it stops its timer P2,,n client:

I Server #2 is a slow server and interprets received requests on a periodic basis (diagnostic service data interpretation
rate). In the worst-case, the last check for incoming request messages is just prior to the network layer reception of the
functionally addressed request message. This would mean that the request would be stored in a buffer and bhe processed
at the earliest the next time the scheduler checks for an incoming request. When server #2 processes the request, then it
determines that it does not need to answer, because it does not support the requested information.

S Even if the client has received all expected response messages to a functionally addressed request message, it shall
wait until Pacm ciient iMes out before it is allowed to transmit the next request message. At the point in time PSCAN Client
times out, the client transmits the next request message.

R This new request is indicated in the servers via N_USData.ind and processed immediately by server #1, while server
#2 processes the request the next time the scheduler checks for incoming request messages.

| The completion of the new request is indicated in the client via N_USData.con and starts the P3can Functiona HiMer in
the client. -

| Forthe request message it is also assumed that only server #1 supports the requested information, which means that
there will be no response message from server #2. Server #1 is a fast server and can immediately process the received
request message and transmits its response within P2,y server

K QOnce the client receives the response message, this is indicated via N_USData.ind. The client only expected a
response message from server #1, therefore it stops its timer P2,y ciient-

b Server #2 is a slow server and interprets received requests on a periodic basis {diagnostic service data interpretation
rate). This would mean that the request would be stored in a buffer and be processed at the eartiest the next time the
scheduler checks for an incoming request. When server #2 processes the request, then it determines that it does not need
to answer, because it does not support the requested information.

M The 834, timer of the client times out, which forces the client to transmit a functionally addressed TesterPresent (3E
hex) request message, not requiring a response message from the addressed server(s). Based on the situation in which
the P3can Funciona timer is still active at this point in time, the transmission of the TesterPresent (3E hex) shall be
postponed until the expiration of the timer P3¢,y runctional-

" When the P3can Fundionat liMer times out, the functionally addressed TesterPresent (3E hex} request can be
transmitted by the client via N_USData.req.

C The reception of the TesterPresent (3E hex) request message is indicated in the servers via N_USData.ind.

P The completion of the TesterPresent (3E hex) request is indicated in the client via N_USData.con and starts the
PgCAN Functional timer in the client.

Figure 11 — Minimum time between functionally addressed request messages (P3CAN_Functional)

m L) Il."ﬂt;!lﬂﬂl A‘H .ughts rESEWE'd 25
anﬂucﬂWlemmmISG
No reoduction of hetworking permilttad without Bcanse from IHS Mot for Resals

—— — o, e —— —

ISO 15765-3:2004(E)

Figure 12 graphically depicts the P3can physical timing handling for the client. The figure shows the handling of
a physically addressed request that does not require a response, and of the functionally addressed
TesterPresent (3E hex) request message in the client when S3,. times out.

N

client sarver

N_LiSData.req a

start }
N_USData.con —@ @— N_USData.ind——@— N_USData.ind

physical
request

no response required
pchN__F‘hysir::al
diagnostic
service
S3¢hent ' data
timeout ' interpretation
\J\ i rate
@ — N_USData.req —@
_5 -
| P2 § ¢
CAN_Physical W= D‘:
L)
o o
2w
b
e

N_USData.con —@ @—- N_USData.ind—-@— N_USData.ind }The TesterPresent
| can be ignorad

* O
f next request ‘

N_USData.reqg —O
timeout |
start start |
N_USData.con ‘@ k N__USData.ind—@‘N_USDaia.End

physical
reguest

| no response required |
, l diagnostic
. service
‘ | data
. : interpretation
l l rate
comricht N ional Organtration for Standarizat © 1SO 2004 - Ali rights reserved

Reproducad by IHS under Bcense with IS0
Mo reproduction of notworking permited without Scanee from HS Mot for Resale

—

ISO 15765-3:2004(E)

2 The diagnostic application of the client starts the transmission of a physically addressed request message by issuing a
N_UISData.req to its network layer. The network layer transmits the request to the server.

b The completion of the request message is indicated in the client via N_USData.con. The client now starts its
P3caN physical timer. There is no response required to be transmitted, therefore the client does not need to start its
P2cAN_Client iMer.

C The completion of the request message is indicated in the servers via N_USData.ind. In any non-default session, the
S3gerver timer is now stopped.

d The server interprets received requests on a periodic basis (diagnostic service data interpretation rate). The request is
processed the next time the scheduler checks for incoming requests. The completed execution of the service would restart
the 53 timer during any non-default session.

© The 83, timer of the client times out, which forces the client to transmit a functionally addressed TesterPresent (3E
hex) request message, not requiring a response message from the addressed server(s).

Server

; I it is assumed that the P3caN Fundional tiMer is no active at this point in time, which means that the request is
L transmitted immediately. -

89 The completion of the TesterPresent (3E hex) request message is indicated via N_USData.con in the client.

}: N The reception of the TesterPresent (3E hex) request message is indicated in the servers via N_USData.ind. At this

point in time, the previous received physical request is still pending in the server {not yet processed) and the S3Server
timer is stopped. Therefore, the received TesterPresent (3E hex) request message can be ignored by the server.

P When the P3:an Physical timer times out in the client, then the client can transmit the next physically addressed
request message by issuing N_USData.req to its network layer.

} The completion of the physically addressed request message is indicated in the client via N_USData.con. The client
now starts its P3xay pysical timer again. There is no response required to be transmitted, therefore the client does not
need to start its P2,y criem timer.

K The completion of the request message is indicated in the servers via N_USData.ind. In any non-default session, the
S3ganver timer is now stopped.

Figure 12 — Minimum time between physically addressed request messages (P3CAN_Physical)

6.3.5.4 Unsolicited response messages

Unsolicited messages are those transmitted by the server(s) based on either a periodic scheduler (see service
ReadDataByPeriodicldentifier in 9.3.4) or a configured trigger, such as a change of a DTC status or a
dataldentifier value change (see service ResponseOnEvent in 9.2.8).

Any unsolicited transmitted response message shall not reset the S3g.n ., timer in the server. This avoids a
diagnostic session keep-alive latch-up effect in the server for cases where a periodic message transmission is
active or a timer-triggered event is configured in the server where the time interval between the events is
smaller than 83, The S3g.ner timer shall only be reset if the transmitted response message is the direct
result of processing a request message and transmitting the final response message (such as the initial
positive response that indicates that a request to schedule one or more periodicDataldentifiers is performed
successfully).

NOTE For the requirements for transmission of unsolicited response messages, see 9.3.4 and 9.2.8.

6.3.6 Error handling

Error handling for the application layer and session management to be fulfilled by the client and the server
during physical and functional communication shall be in accordance with Tables 7 and 8, in respect of which
it is assumed that the client and the server implement the application and session layer timing according to
this part of 1ISO 15765.

Sopyright Imemational Organization for Standardzeton IS Teserved 27
Reproduced by HS wnder Bconss with IS0
NG IatroducIon oF Networking pormiiad withowt Bcenae fom [HS Met for Resals

ISO 15765-3:2004(E)

Communication

phase

Client error

type

Table 7 — Client error handiing

Client handling

Physical communication

Functional communication

Request
fransmission

N_USData.con
from network
layer with a
hegative result
value.

The client shall repeat the last request,
after the time P3caN ppysica fOltOWiINg
the error indication.

Restart S3py. i the case of a
physically addressed and sequentially
transmitted TesterPresent (because
S3crent has been stopped based on
the request message transmission).

The client shall repeat the last request,
after the time P3.an Functiona TOlOWING
the error indication. ~

P20 AN_ctient

The client shall repeat the last request.

Restat S3.;.: i the case of a

Where the client does not know the
number of servers responding, then
this is the indication for the client that
no further response messages are
expected. No retry of the request
message is required.

The client shall completely receive all
response messages that are in
progress until it can continue with

Timeout physically addressed and sequentially | o 4o requests
P20 AN Client fransmitted TesterPresent (because '
¥ S3chent has been stopped based on the | Where the client knows the number of
request message transmission). responding servers, then this is the
indication for the client that not al
expected servers responded.
The client shall repeat the request after
it has completely received any
response message that is in progress
at the point in time the timeout occurs.
The client shall repeat the last request.
N USData.ind _ The client shall repeat the last request
Response from network | Restart S3gyy i the case of a8) after it has completely received any
PO layer with a | physically addressed and sequentially | response message that is in progress
reception transmitted TesterPresent (because

negative result
value.

S3epert @s been stopped based on the
request message transmission).

at the point in time the error has been
indicated.

The client error handling defined shall be performed for a maximum of two (2} times, which means that the worst-case

of service request transmissions Is three (3).

Communication
phase

Request
reception

value,

Server error type

N _USData.ind from network
layer with a negative resuit

Table 8 — Server error handling

ignore the request.

Server handling

Restart S3g,,,., timer (because it has been stopped based on
the previously received FirstFrame indication). The server shall

PzCAN_SEwer
P26aAN Client

P2"caN_Client

Timeout

N/A

Response
transmission

70

value,

Reproduced by IHS under Bconsa with 150

Na reproduction or networking permitted withowt icense from IHS

N_USData.con from network
layer with a negative result

MNert ko Resale

Restart S3¢,.n.r timer (because it has been stopped based on
the previously received request message). The server shall nof
perform a retransmission of the response message.

© ISO 2004 — All rights reserved

ISO 15765-3:2004(E)

7 Network layer interface

7.1 General information

This part of 1ISO 15765 makes use of the network layer services defined in ISO 15765-2 for the transmission
and reception of diagnostic messages. This section defines the mapping of the Application layer protocol data
units (A_PDU) onto the Network layer protocol data units (N_PDU).

NOTE The network layer services are used to perform the application layer and diagnostic session management
timing (see 6.3).

. 7.2 FlowControl N_PCI parameter definition

The client shall not use the values of F1 hex — F9 hex for the Stmin parameter. These Stmin parameter values
shall be supported by the server(s) if requested by the vehicle manufacturer.

7.3 Mapping of A PDU onto N_PDU for message transmission

The parameters of the application layer protocol data unit defined to request the transmission of a diagnostic
service requestresponse are mapped in accordance with Table 9 onto the parameters of the network layer
protocol data unit for the transmission of a message in the client/server.

The network fayer confirmation of the successful transmission of the message (N_USData.con) is forwarded
to the application, because it is needed in the application for starting those actions, which shall be executed
immediately after the transmission of the request/response message (ECUReset, BaudrateChange, etc.).

Table 3 — Mapping of ServiceName.request/ServiceName.response A_PDU
onto N_USData.request N PDU

A_PDU parameter N_PDU parameter
(Application Protocol Description (Network Protocol Description
Data Unit) Data Unit)
A_SA Application Source Address N_SA Network Source Address
A_TA Application Target Address N_TA Network Target Address
A Tatype Application Target Address N_Tatype Network Target Address type
type
A RA Application Remote Address N _AE Network Address Extension
A PCILSI Application Protocol Control N_Data[0] Network Data
. Information Service Identifier

A_Datal0] — A_Data[n] j Application Data N_Data{1] N_Data[n+1] | Network Data

7.4 Mapping of N_PDU onto A_PDU for message reception

The parameters of the network layer protoco! data unit defined for the reception of a message are mapped in
accordance with Table 10 onto the parameters of the application layer protocol data unit for the
confirmation/indication of the reception of a diagnostic response/request,

The network layer indication for the reception of a FirstFrame N_PDU (N_USDataFirstFrame.ind) is not
forwarded to the application, because it is only used within the application layer to perform the application

layer timing (see 6.3). Therefore, no mapping of the N_USDataFirstFrame.ind N_PDU onto an A PDU is
defined.

: F=y u‘:-ﬁﬁ;gnx ATl 'ghts reserved 29
Reproducad by IHS under icense with K50
No reproducton or networking permitted without censs fom IHS Not for Resale

— —_— _— —_— - - . -
’ —_—— - —_— —— - - - - - J— — — —_——— —_

ISO 15765-3:2004(E)

Table 10 — Mapping of N_USData.ind N_PDU onto ServiceName.conf/ServiceName.ind A_ PDU

N_PDU parameter A_PDU parameter
(Network Protocol Description (Application Protocol Description
Data Unit) Data Unit)

N_SA Network Source Address A_SA Application Source Address
N_TA Network Target Address A TA Application Target Address
N_TAtype Network Target Address type A_TAtype Application Target Address type
N_AE Network Address Extension A _RA Application Remote Address

N_Data[0] Network Data A_PCLSI Application Protocol Control
Information Service ldentifier

N_Data[1] N_Data[n+1] | Network Data A_Data[0] - A_Dataln] | Application Data

8 Standardized diagnostic CAN identifiers

8.1 Legislated 11 bit OBD CAN identifiers

The 11 bit CAN identifiers for legislated OBD can also be used for enhanced diagnostics (e.g. the functional
request CAN Id can be used for the functionally addressed TesterPresent (3E hex) request message to keep
a non-defaultSession active).

If the 11 bit CAN Identifiers as specified in 1SO 15765-4 are re-used for enhanced diagnostics, then the
following requirements apply:

a) network layer timing parameters according 1SO 15765-4 shall also apply for enhanced diagnostics;

b) the DLC (CAN data length code) shall be set to eight (8) and the CAN frame shall include eight (8) bytes
(unused bytes shall be padded).

NOTE ISO 157654 allows for max. 8 OBD related servers {ECUs); therefore, 11 bit CAN identifiers for max. 8
servers are defined.

8.2 Legislated 29 bit OBD CAN identifiers

The 29 bit CAN identifiers for legislated CBD comply with the Normal fixed addressing format specified in
IS0 15765-2 and can also be used for enhanced diagnostics.

If the 29 bit CAN Identifiers as specified in ISO 15765-4 are re-used for enhanced diagnostics, then the
following requirements apply:

a) network layer timing parameters as specified in SO 15765-4 shall also apply for enhanced diagnostics;

b) the DLC shall be set to eight (8) and the CAN frame shall include eight (8) bytes (unused bytes shall be
padded).

NOTE The CAN identifier values given in the fables use the default value for the priority information in accordance
with ISO 15765-2.

8.3 Enbanced diagnostics 29 bit CAN identifiers

8.3.1 General information

This section specifies a standardized addressing and routing concept for CAN using 29 bit identifiers. The
concept makes use of the well-known and approved mechanisms of the internet protocol (IP). By this means,

szn'lmwhm © 1S0O 2004 — All rights reserved
Raproduced by IHS tnder Boonse with 1SS0
No reproduction or networking permithed without kcense from IHS Not for Resala

ISO 15765-3:2004(E)

standardized algorithms for addressing and routing can be used for all nodes in the whole network
independent of their positioning in subnetworks.

This addressing and routing concept provides the following features:
— maxtmum flexibility during the design process of network structures,
— full customization of network and node address,

— the possibility of CAN controller hardware filter feature optimization by the assignment of the appropriate
network and node address,

— gateways need to know only network addresses of the connected sub-networks instead of all addresses
of their sub-network members.

The following specifies the technical details of the CAN identifier structure, the structure of addresses, anﬁ
subnet masks. A detailed description of the algorithms used for routing and broadcasting is also included. .

8.3.2 Structure of 29 bit CAN identifier

The 29 bit CAN identifier structure specified in this document is compatible in regard to coexistence with the
definitions in [ISO 15765-2, 1S5S0 15765-3 and ISO 15765-4 and with SAE J1939-21. Therefore, the encoding of
bit 25 (Reserved/Extended Data Page) and bit 24 (Data Page) in the 29 bit CAN identifier structure defined in
SAE J1939-21 shall be used to determine whether a CAN identifier and frame is of SAE J1839 or 150 15765
format. This enables the vehicle network designer to define non-diagnostic messages and associated CAN
identifiers customized according to his needs or to utilize and benefit from the definitions in SAE 11939 in
combination with a diagnostic services implementation as defined in 1SO 15765-2, ISO 15765-3 and

1SO 15765-4.

8.3.2.1 Structure of SAE J1939 29 bit CAN identifier

For information about the structure of the SAE J1839 29 bit CAN identifier format, see Table 11.

Table 11 — SAE J1939 structure of 29 bit CAN identifiers

29 bit CAN identifier

28 | 27| 26 16 | 15

Reserved/ PDU-specific
Extended PDU Format (desfination or PDU format
data page extension)

Source address
(unique source address)

8.3.2.2 Structure of 1SO 15765 29 bit CAN identifier

Table 12 shows the structure of ISO 15765 CAN identifier that can be distinguished from the SAE J1939
format through the "SAE J1939 Reserved/Extended Data Page and SO 15765 Extended Data Page” bit 25
and the "SAE J1939 Data Page ISO 15765 Data Page’ bit 24. Thus, I1SO 15765-formatted and SAE J1939-
formatted 29 bit CAN identifiers can coexist on the same physical CAN bus system without interference.

Table 12 — IS0 15765 structure of 29 bit CAN identifiers

29 hit CAN identifier

28 | 27 | 26 25 24 23 22

. Extended | Data Type of -
Priority data page | page | service (TOS) Source address Destination address

Encoding see Encoding see Unique source address, Unique destination address,
8.3.2.4 8325 see 8.3.3 see 8.3.3

Cafyright intemationat Ovganization for Standardization 111S reserved 31
Reproduced by IHS under censa with IS0
No reproduciion or networking permitiad without Sicenss from HS Not for Resale

ISO 15765-3:2004(F)

8.3.2.3 Priority field

The priority field is defined as specified in SAE J1939, to make use of the arbitration mechanism of CAN.
Because the CAN identifier can no longer be assigned freely (source and target address are included in CAN
identifier), the priority of a CAN message would be assigned by the sender (source address) and the receiver
(target address) of that message indirectly. Eight (8) different priority levels are possible.

Priority level 6 (110b) shall be assigned to diagnostic request messages/frames.

B.3.2.§ Extended Data Page and Data Page field

The Extended Data Page and Data Page bits determine which format of the 29 bit CAN identifier shall be
used. Table 13 specifies the encoding.

Table 13 — Definition of Extended Data Page and Data Page field

0 0 SAE J193%-defined or manufacturer-defined “Normal Communication Message”
strategy if SAE J1939 is not implemented

0 1 SAE J1939-defined or manufacturer-defined “Normal Communication Message”
strategy if SAE J1939 is not implemented

1 0 SAE J1939-reserved or manufacturer-defined “Normal Communication Message”
strategy if SAE J1939 is not implemented

ISO 15765-3-defined

8.3.2.5 Type of service (TOS) field

The type of service field is used to be able to address different services of a node without having to assign
different addresses to it. Thus, eight (8) different service types of a node can be addressed concurrently using
a single destination address. The different types of services and their usage are defined in Table 14.

Table 14 — Definition of Types Of Service (TOS)

Type Of Service (TOS) Description

1SO reserved This bit combination is reserved for future use by iSO.

This bit combination indicates that the messages are OEM-specific. A combination of
OEM-defined messages | ISO 15765-3 and legacy protocol messages can be used to support a mixture of
servers on the same network with different protocol messages.

Network control message | This bit combination indicates that the frame(s) contain data sent and received by
protocol / network gateways to supply information about the cument state of subnets {(e.g. network
management unreachable, network overload) and nodes {e.q. host unreachable).

This bit combination indicates an IS0 15765-3-defined diagnostic service addressed
1SO 15765-3-defined to a node. The user data byles of the CAN frame contain diagnostic requests

messages {(1ISC 15765-3) using the network layer services and transport layer defined in
ISO 15765-2.

8.3.2.6 Source address

The source address contains the address of the sending entity. This information ensures the correct
arbitration and can be used by the receiver of a message to address its replies. The structure of the source
address is described in 8.3.3.

wmmmumhsm © 150 2004 - All rights reserved

Rapwoduced by 1HS under lcanse with 150
Mo reproduction or networking permitted without icenss from THS Mot for Resake

L
i

1ISO 15765-3:2004(E)

8.3.2.7 Destination address

The destination address contains the address of the receiving entity. This can be a single node, the broadcast
address of a network or a genenc broadcast. The destination address Is used by gateways to delermine

whether the CAN frame shall be routed to another CAN bus or not. The structure of the target address is
described in 8.3.3.

8.3.3 Structure of address

8.3.3.1 General information

The source and destination addresses are encoded in the 29 bit CAN identifier with a length of 11 bits each. In
the following subclauses, the letters “X” and Y™ are used to represent a variable parameter.

8.3.3.2 Definition of address

An address consists of two parts.

a) Network address

The network address part consists of the first “X” sequential bits of the address and determines a node's
network. The same network address shall be assigned to the nodes on one physical bus. The network
address part shall not have all bits set to one (1). Thus, the minimum length for the network address part
is two (2) bits. The maximum length is nine (9) bits because at least two (2) bits are needed to provide
valid node address parts. The maximum number of possible subnets can be calculated as follows:

2X _ 1 (where X is the number of bits used for the network address part)

b} Node address

The node address part consists of the remaining “Y” (Y = 11 — X) sequential bits of the address and
determines the node within a subnet. It shall be unique within the subnet. All bits set to zero (0} and all bits
set to one (1) are not allowed. Thus, the minimum length of the node address part is two (2) bits. The,

maximum length is nine (9) bits because at least two (2) bits are needed for the network address part. Thef;
maximum number of nodes per sub-network can be calculated as follows: :

2Y — 2 (where Y is the number of bits used for the node address part)

A node is assigned a unique address that shall be stored in the node’s internat memory. A node shall receive
messages with the node’s assigned address in the destination address field.

Table 15 presents an example for source and destination addresses. The sending and the receiving nodes
are on different sub-networks.

Table 15 — Example for source and destination address

29 bit CAN identifier

28 | 27 (26| 25 | 24 23 22 |21

- Type of service N
Priority ISO 15765 1SO 157852 Source address Destination address

format Mmessages Ox2ED Ox32F

1T | 1] 1 O(111]10]10]11]0]1

] F= lﬁﬁhﬂgﬂ‘ AN ...ght,s reserved 33
Reproducad by IHS under Ecense with 150
NO reproduction (of hetworking permilted withoot Roense from IHS Not ior Rasaky

ISO 15765-3:2004(E)

83.3.3 Subnet mask
The subnet mask assigns the number of bits used for the network address part and for the node address part.

The length of the subnet mask is 11 bifs (same as the length of the address). The value of a subnet mask is
assigned by setting the first X" sequential bits set to one (1). The number of sequential bits set to one (1)
selects the network address part from the whole address. The remaining sequential bits set to zero (0) select
the node address part from the whole address (see Table 16 and Table 17 for examples of subnet masks for
sender and receiver).

Due to the fixed length of a subnet mask and the first “X” sequential bits set to one (1), only the number of bits
set to one (1) needs to be stored instead of the whole bit mask. Thus, a short notation is used to define a
subnet mask.

Table 16 — Example for sender’s subnet mask

Subnet mask
10 9 8 T 6 5 4 3 2 1 0

0x7C0 (short notation: /5)
Network address part Node address part
ERERENER

Table 17 — Example for receiver's subnet mask

Subnet mask

10 9 8 7 6 5 4 3 2 1 0

0x7EQ (short notation: /6)
Network address part Node address part
tjrftfrfrfcfofofajal e,

Each node is assigned a subnet mask that shall be stored in its internal memory. Nodes of the same subnet
are assigned the same subnet mask.

8.3.3.4 Network address

The network address of a node can now be calculated using its assigned address and subnet mask.
Therefore, a simple bit by bit AND operation of address and subnet mask shall be performed. See Tables 18
and 18 for examples of determining the network address of sender and receiver.

Table 18 — Example for sender’s network address

Source address

Address: 0Ox2ED

Subnet mask: /5

Network address: 0x2C0 0

thgmmhm © 180 2004 — All rights reserved
Roproduced by IHS undar Bcanse with 150
Ma reprodiction or networking pemmitted without kosnss from 1HS Nat for Resalo

. P - —_— - -

ISO 15765-3:2004(E)

Table 19 — Example for receiver's network address

Destination address

Bit 1w|lo|s|7|e|s5|alslz]1] 0
Address 0x32F ol1l1]oflol1]ol1]1]1] 1
Subnet mask: /6 111111111111 0{0;0}0] O

Network address: 0x320 | 0 | 1 | 1 mnmm

To describe a subnet, its network address and subnet mask are noted in the following form:
<network address> / <short subnet mask notation>
For the given examples this resulis in

sender's subnet: 0x2C0 /5

receiver's subnet: Ox320/6

This information is used by gateways for routing.
8.3.3.5 Broadcast address

8.3.3.51 Generic broadcast (0x7FF}

The generic broadcast allows for broadcasting messages to all nodes of a network. To send a broadcast to
the whole network, the target address Ox7FF {all bits set to one (1)] shall be used. A message with that target
address will be routed by all gateways. All nodes on the network shall receive and process messages with
destination address Ox7FF.

8.3.3.5.2 Subnet broadcast

The subnet broadcast is intended to be used for broadcasting messages to the nodes of a specific sub-
network. To send a broadcast to a specific subnet, the broadcast address of that subnet shall be calculated.
This is done by taking the destination's subnet information (network address and subnet mask) and setting all
node address part bits [marked with zero (0) in subnet mask] to one (1). See Table 20 for a subnet broadcast
example for the recetver's subnet.

Table 20 — Example for subnet broadcast to receiver’s network

Destination address

10| 9

Network address; Ox320
Subnet mask: /6

Broadcastaddross: 0x33F_ | 0 [1 [1]0fot[t1]1]1]1] 1

Subnet broadcast messages are nomaily routed by gateways.

All nodes have to receive messages with the network address part equal to their own network address part
and all bits setto “1 in the node address part of the destination address field.

8.3.4 Message retrieval

Each node on a subnet compares the destination address of a CAN frame with its own address. If those
match, the information contained is transferred to the next higher layer in the OS] model for further
processing.

Copyfight Intsmationat Orgmsiesaen or Sesardaivn ONts reserved 35
Repmducad by HS under kconse with £SO
Mo reproduction of hetworkng parmitied withowt kcence from HS Not for Reeaks

ISO 15765-3:2004(E)

8.3.5 Routing

8.3.5.1 General information

Routing applies whenever nodes from physically disconnected subnets communicate with each other and
their CAN frames have to be transferred from one subnet to another subnet. This is performed by additional
nocdes, which are physically connected to the network where the CAN frame is received and the network
where the CAN frame shall be transmitted to, to reach its destination. Thus, a CAN frame may pass several
gateways from its source subnet to its destination.

8.3.5.2 Network and subnet structure

Generally, networks can be designed as needed when the following restrictions are respected:
— addresses shall be unique;
— . @ll nodes in a subnet have the same subnet mask;

_—:;; all nodes in a subnet have the same network address:

—— whenever a network address is assigned to a subnet, no further network addresses in that address scope
' may be assigned to other networks, as this would result in a routing problem.

Figure 13 shows a configuration with four (4) subnets connected to a gateway. Three (3) subnets are
connected through one gateway and the 4th subnet ts connected through an additional gateway.

7 Subnet: 0x500/5 T,

/ |

~{ hode

S £t 0x51D/5
(' node \ gateway 1 Ij--ziifg.j &
| \0x6836 J 1| port2: |) port3: | i
JEEE = fod {0xB681/6] |0x654/5] 1.1 0

node i
0x652/6 |

| Subnet:x680/6] | — | Subnet: 0x650/6 -

] portn |
\; -] Ox653/6 s ;

node
0x684/6

iy | G| gateway2 |
~ Subnetﬂ“540fﬁ } _\E__ﬂ port 2: v

\ 0x641/6

e
[N
3
3
& ol
I T .
[R ale m e el -
I NI I I T T Ttaan
mim) = = gmm pmagp= = = SNV
- - - - - - LN T Dt
o LamEdra=EEl mEdtaEa=ra Gnara S
L TN T L L TR FE Ty
LI L LI IR
[R I T B i L T |
LS ---h----i

- [, P
- - - == o= = == -
[' 1

Figure 13 — Network configuration example

o ¥~ :
Copryright Intemational Organization for Standardization © SO 2004 — All nghts reserved
Reproduced by IHS ursder Bcensa with 150
Mo reproduction or networking permitted without cense from HHS Not for Resalo

Y e — — —_ ——— .

ISO 15765-3:2004(E)

8.3.5.3 Gateways and routing

8.3.5.3.1 Description

Gateways are nodes connected to more than one subnet and therefore able to transfer CAN frames from one
subnet to another.

8.3.5.3.2 Ports

A port is the connection of a gateway to one physical subnet. A gateway shall have at least two (2) ports.
Each port is assigned a network address and subnet mask of the subnet it is connected to.

In Figure 13, the configuration includes two (2) gateways, where gateway 1 has three ports and gateway 2
has two ports.

8.3.56.3.3 Routing table

To determine whether a CAN frame needs to be routed, a routing table shall be-generated and stored in the
gateway's memory. A routing entry contains the network address, subnet mask and the port on which the
subnet can be reached. Such an entry shall exist for each subnet that is connected (directly or indirectly)
through this gateway.

See Table 21 for the network shown in Figure 13. Through hierarchical design of the networks 640/6 and
650/6, the routing table entries can be reduced to one entry 640/5.

Table 21 — Routing table example

subnet {network address/subnet mask) m

Gateway 2

8.3.5.3.4 Routing algorithm

A gateway receives all messages from the poris that are connected to the different subnets. If the gateway is |

an addressable node, then only one address out of the address scopes of the subnets connected directly to
the ports of that gateway shall be assigned. An additional message retrieval check is performed before the
proper routing algorithm. If the destination address is 0x7FF, the message is copied to all ports except the one
on which the message was received. The normal routing algorithm is skipped.

After having received Message A, the routing steps shall be as shown in Figure 14.

8.3.5.3.5 Routing example

In Figure 15, a routing example is shown for a CAN message from the client with the address 0x51A to the
server with the address 0x642 using the routing information from Table 21.

Copyright Inismational Organization for Standardizaton 9111 reserved 37
Fleproduced by IHS under Bconse with SO
F o reprocducion or networking pesmitted without Bcense from [HS Nt for Resale

—_———— e —— =

1ISO 15765-3:2004(E)

The following steps are performed by the gateways on reception of that message.
a) Gateway 1

1) Analysis of CAN-ID: DA = 0x642. See Tables 22 and 23.

Table 22 — Gateway 1 routing decision

Routing decision Network Port
(0x642 AND 0x7C0) = 0x640 1= 500 - no local message — routing 500/5 1

Table 23 — Gateway 1 routing analysis

Routing analysis Network

O0x642 AND Ox7ED = 0x640 1= 680 — next entry
0x642 AND O0x7C0 = O0x640 = 640 — correct path

2) Check of whether the message is addressed to gateway: 0x642 = 0x654.
3) Forwarding of message to port 3.
b} Gateway 2

1) Analysis of CAN-ID: DA = 0x642. See Tables 24 and 25.

Table 24 — Gateway 2 routing decision

T S N N
0x642 AND 0x7CO = 0x640 1= 650 —» no local message —» routing 650/6 _

Table 25 — Gateway 2 routing analysis

Routing analysis Network Port
Ox642 AND Ox7EQ = 0x640 = 640 — comrect path 640/6 2

?é) check whether the message is addressed to gateway: 0x642 1= 0x641.

3) forward message to port 2.

Copyrght Inemntional Orgarization for Standardization ® 1SO 2004 - All rights reserved

Reproduced by THS under Eoanse with |50
Ho reproduction or networking parmitted without Reonse from HS Not for Resalky

- - - ——— —_—— — - - - —_—— - —— —_——— . re——— —_—— e — - - — ———\‘
1
-
1
1
1

1ISO 15765-3:2004(E)

message received
on port_X

0
4 | N

1 —s 5
Result= go tonextrouting | o en yes
DA AND SM entry (skip entries (- of routing table .
(port_X) for receiving port) reached?

Result=
DA AND SM

(entry_X)

send message on | MO
port(entry_X)

process message

end of routing

Steps 4
A Message received on port “X". ;

1 Bit by bit logical AND operation is performed with destination address of the received message and subnet mask of
the port on which the message was received. ’

2 The result is compared with the network address of the port on which the message was received. The network
address of the pott is either stored in the node's memory or can be calculated using the address and subnet mask of that
port. If the result and the network address are equal, the received message is a local message of the port's subnet and no
routing will apply (B). If the result and the port's network address are different, a routing analysis shall be performed,
continuing with step 3.

3 A bit by bit logical AND operation is performed with destination address of the received message and the subnet mask
of the current routing table entry.

4 The resuit of the operation and the network address of the current routing table entry are compared. If those matches
the algorthm will continue with step 8, otherwise the algorithm will continue with step &.

5 If there are additional routing table entries, the algorithm will continue with step 6. Otherwise no routing will apply (B).
6 The next routing table entry is selected and the algorithm jumps back to step 3.

7/ The destination address of the message is compared with the gateway's address on the current port. This step is only
needed if the gateway is an addressable node, otherwise the algorithm jumps directly to step 8. If the destination address
is the address of the gateway for the current port, the algorithm continues with step 9. If destination address and address
of the gateway are not equal, the algorithm is continued at step 8.

8 The message is sent on the port of the routing table entry that matched the network address of the destination
address.

8 The message was addressed to gateway node and thus, it is processed by application.
B End of routing aigonthm.

Cotwriaht intemtionaf Do miesaem ke S et ghts reserved 39
Repiaduced by IHS ynder canss with 150
No raproducton o hetworking parmitted without icenos from IHS Not for Rexsals

ISO 15765-3:2004(E)

! Key

| DA destination address

! GWAD gateway's address on port_X
NA nefwork address
SM subnet mask

entry_X entry #X in the gateway's routing table
port X port #X of the gateway

Figure 14 — Routing algorithm sequence chart

node node
Ox51B/5 O0x51C/5

' node | node
/ 0x682/6] Ox651/6
/ port 11 |
[0x51D/5 '}
ll ! node gateway 1 ; ode
' I 0x683/6 port2: | [port3: 3 [\ 0x652/6
'\ 0x681/61 |0x654/5
\ port 1:
g ' node -
/ \ 0x684/6 0x653/6
\ gateway 2
N— Ox641/6
node

| | 0xB43/6

Key
‘ : ~ Virtual connection
| — message path on CAN bus
‘ — message path in gateway

| Figure 15 — Routing example from client 0x51A to server 0x642

9 Diagnostic services implementation

9.1 Unified diagnostic services overview

This clause defines how the diagnostic services as defined in ISO 14229-1 apply to CAN. For each applicable
service, the applicable subfunction and data parameters are defined.

' NOTE The subfunction parameter definitions take into account that the most significant bit is used for the
suppressPosRepMsglindicationBif parameter as defined in 1S90 14229-1.

Cmnigmmfunﬁﬁmamhsmﬁuﬂm © 1S0O 2004 — All rights reserved
Raproduced by HS under §cense with 150

Mo reproduction or networking permitied without Boenss from IHS Not for Resale

1SO 15765-3:2004(E)

The purpose of Table 26 is to provide an overview of all unified diagnostic services, as they are applicable for
an implementation of diagnostics on CAN. The tabie contains the sum of all applicable services. Certain
applications using this part of ISO 15765 to implement diagnostics on CAN may restrict the number of useable
services and may categorize them in certain application areas/diagnostic sessions (default session,
programming session, etc.).

Table 26 — Diagnostics on CAN — Unified diagnostic services overview

Diagnostic service name Service Id Subfunction suppressPosRspMsgindicationBit Subclause
(IS0 14229-1) value supported = TRUE (1)
{hex) (No response) supported 2

Diagnostic and Communication Management Functional Unit

DiagnosticSessionControl 10 Yes Yes 921
ECUReset 1 Yes Yes 922
SecurityAccess 27 Yes Yes 923
CommunicationControl 28 Yes Yes 8.2.4
TesterPresent 3E Yes Yes 89.2.5
SecuredDataTransmission 84 — N/A 9.2.6
ControlDTCSetting 85 Yes Yes 9.2.7
ResponseOnEvent 86 Yes Yes 928
LinkControl 87 Yes Yes 0.2.9
Data Transmission Functional Unit
ReadDataByldentifier 22 e N/A 8.3.1
ReadMemoryByAddress 23 — N/A, 89.3.2
ReadScalingDataByldentifier 24 — N/A 0.3.3
ReadDataByPeriodicldentifier 2A — N/A 9.3.4
DynamicallyDefineDataldentifier 2C Yes Yes 9.3.5
WriteDataByldentifier 2E — N/A 9.3.6
WriteMemoryByAddress 3D — N/A 9.3.7

Stored Data Transmission Functional Unit

ReadDTCInformation 19

ClearDiagnosticlnformation 14

Input/Output Control Functional Unit

InputOutputControlByidentifier

Remote Activation Of Routine Functional Unit

RoutineConirol

Upload/Download Functional Unit

RequestDownload 34 — N/A 9.71
RequestUpload 35 — N/A 072
TransferData 36 _ N/A 9.7.3
RequestTransferExit 37 — NIA 974

It is implied that suppressPosRspMsgindicationBit = FALSE (0) is supported by each service that utilizes a subfunction
parameter. It is the system designer's responsibility to assure that in case the client does not require a response message
[suppressPosRspMsglndicationBit = TRUE (1})] and the server might need more than P2.an server 10 process the request message
that the client shall insert sufficient time between subsequent requests. There might be situations where a server is not able to perform
the requested action nor being able to indicate the reason to the client.

o] 0 ﬂ_lrfﬁi;ngna A ..:ghts I'ESEWE.‘(:I 41
Repeoducad by IHS under Bcensa with IS0
Mo mproducion of networlong pemitted without Bcense om IHS Nt for Ragala

1SO 15765-3:2004(E)

9.2 E::Jiagnostic and communication control functional unit

9.2.1 DiagnosticSessionControl (10 hex) service

Table 27 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 27 — Subfunction parameter definition

Hex Description Cvt Mnemonic
(bit 6-0)
01 defaultSession U DS
02 ECUProgrammingSession U ECUPS
03 ECUExtendedDiagnosticSession U ECUEDS

Tables 28 and 29 define the structure of the response message data parameter sessionParameterRecord as
applicable for the implementation of this service on CAN.

Table 28 — sessionParameterRecord definition

Byte pos. Description Cvt Hex Value Mnemonic
in record
sessionParameterRecord[] #1 = SPREC_
#2 P2can server max {IOW byte) M 00-FF P2CSML
#3 P2* AN Sarver max (Nigh byte) M 00-FF P2ECSMH

Table 29 — sessionParameterRecord content definition

Description Resolution min value m

Detault P2cayn server max timing supported by the
server for the activated diagnostic session.

1ms O0ms 65535 ms

Enhanced (NRC 78 hex) P2¢cay server max

supported by the server for the activated diagnostic 655350 ms
session.

9.2.2 ECUReset {11 hex) service

Table 30 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 30 — Subfunction parameter definition

Hex Description Mnemonic
(bit 6-0)

hardReset HR
keyOffOnReset KOFFONR
softReset SR

L enableRapidPowerShutDown

disableRapidPowerShutDown

cwhmmﬂmgmhsmm © 150 2004 -~ All rights reserved
Reproduced by IHS under icenss with 1SO
No reproduction of hetworking permitted without icense o IHS Not for Resale

_——— - - _————— — - - — - - [—_

_——e e o —————

1ISO 15765-3:2004(E)

923 SecurityAccess (27 hex) service

Table 31 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 31 — Subfunction parameter definition

Hex Description Mnemonic
(bit 6-0)

requestSeed

sendKey

requestSeed

sendKey

9.24 CommunicationControl (28 hex) service

Table 32 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 32 — Subfunction parameter definition

Hex Description Tvt - ;ﬂnemnnic
(bit 6-0)
00 enableRxAndTx U ERXTX
01 enableRxAndDisableTx U ERXDTX
02 disableRxAndEnableTx U DRXETX
03 disableRxAndTx U DRXTX

Table 33 defines the data parameters applicable for the implementation of this service on CAN.

Table 33 — Data parameter definition — CommunicationType

m Description Cvt Mnemonic
U

application

APPL
networkManagement U NVWM

Bit 1 — 0 can be used in any combination. Each bit represents a communicationType. More then one communicationType may be
initialised at the same time.

9.2.5 TesterPresent (3E hex) service

Table 34 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 34 — Subfunction parameter definition

(bit 6-0)

“ zeroSubFunction M ZSUBF

Cpyright Intemationsl Orgonisaten for Starsarazusen ghts reserved 43
Reproduced by IHS under kcense with 150
ke neproduchon or rretworking permitted without Roenss from |HS Not for Resale

ISO 15765-3:2004(E)

9.2.6 SecuredDataTransmission (84 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.2.7 ControlDTCSetting (85 hex) service

Tabié 35 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 35 — Subfunction parameter definition

Hex Description Mnemonic
(bit 6-0)

9.2.8 ResponseOnEvent (86 hex) service

The following requirements shall apply for this service when implemented on CAN.

a) Multiple ResponseOnEvent services may run concurrently with different requirements (different
EventTypes, serviceToRespondTo-Records, ...) to start and stop diagnostic services.

b) While the ResponseOnEvent service is active, the server shall be able to process concurrent diagnostic
request and response messages accordingly. This should be accomplished with a (different) pair of
serviceToRespondTo-request/response CAN identifiers. See Figure 16. I the same diagnostic
request/response CAN identifiers are used for diagnostic communication and the serviceToRespondTo-
responses, the following restrictions shall apply.

1} The server shall ignore an incoming diagnostic request after an event has occurred and the
serviceToRespondTo-response is in progress, until the serviceToRespondTo-response is completed.

2) After the client receives any response after sending a diagnostic request, the response shall be
classified according to the possible serviceToRespondTo-responses and the expected diagnostic
responses that have been sent.

3) If the response is a serviceToRespondTo-response {(one of the possible responses set up with
ResponseOnEvent-service), the client shall repeat the request after the serviceToRespondTo-
response has been received completely.

4) If the response is ambiguous (i.e. the response could originate from the serviceToRespondTo
initiated by an event or from the response to a diagnostic request), the client shall present the
response both as a serviceToRespondTo-response and as the response to the diagnostic request.
The client shall not repeat the request with the exception of NegativeResponseCode
busyRepeatRequest (21 hex). (See the negative response code definitions in ISO 14229-1))

c) The ResponseOnEvent service shall only be allowed to use those diagnostic services available in -the
active diagnostic session.

d) While the ResponseOnEvent service is active, any change in a diagnostic session shall terminate the
current ResponseOnEvent service(s). For instance, if a ResponseOnEvent service has been set up
during extendedDiagnosticSession, it shall terminate when the server switches to the defaultSession.

e) If a ResponseOnEvent (86 hex) service has been set up during defaultSession, then the following shall
apply:

wmwhm © IS0 2004 - All rights reserved
Reprociuced by IHS under cense with 150
No reprochchion OF networking permitted without icense from 1HS Mot for Reasale

SO 15765-3:2004(E)

1} If Bit 6 of the eventType subfunction parameter is set to 0 (do not store event), then the event shall
terminate when the server powers down The server shall not continue a ResponseOnEvent
diagnostic service after a reset or power on (1.e. the ResponseOnEvent service is terminated).

2) If Bit 6 of the eventType subfunction parameter is set to 1 (store event), it shall resume sending
serviceToRespondTo-responses according to the ResponseOnkvent-set up after a power cycle of

the server.
client server
SF-Diag-
Request STRT-Resp. FF~—Fvent
server ignores request
STRT-FC

STRT-CF

[\
\ [
\
-
SR \
\ \

o’ — STRT-CF

The STRT-response is completed and
SF-Diag- the tester repeats the diagnostic request

.---""""'-' '———__-‘
i
...--"""f
ReQUest \ e A 's a valid STRT-I"EspgnSE_
server responds to request

Response

! !

Figure 16 — Concurrent request when the event occurs

f) The subfunction parameter value responseRequired = "no” should only be used for the eventlype =
stopResponseOnEvent, startResponseOnEvent or clearResponseOnEvent The server shall always
return a response to the event-triggered response when the specified event is detected.

g} The server shall return a final positive response 1o indicate the ResponseOnEvent (86 hex) service has
reached the end of the finite event window, unless one of the following conditions apply:

1) if eventTypes do not setup ResponseOnEvent, such as stopResponseOnEvent,
startResponseOnEvent, clearResponseOnEvent or reportActivatedEvents;

2) Iif the infinite event window was established
— if the Service has been deactivated before the event window was closed,

-— Bit 6 of the eventType subfunction parameter is set to 0 (do not store) and the server powers
down or resets.

h) When the specified event is detected, the server shall respond immediately with the appropriate
servicel oRespondTo-response message. The immediate serviceToRespondTo-response message shall
not disrupt any other diagnostic request or response transmission already in progress (i.e. the

gt) i l'l."_'.l""'ht:lnﬁl AL .:gl..r[5 reserved 45
Reproducad by |HS under Bconse with 150

NG reproduction of networking permitted without lcensa fom IHS Mot ko Recale

ISO 15765-3:2004(E)

serviceToRespondTo-response shall be delayed until the current message transmission has been
completed — see Figure 17).

client

Diag-
Request

FC

FC

\
T

-.-__——-‘---ﬂ__

g

p———

server

Diag-Resp. FF __ Event

STRT-response

Diag-resp. CF 's delayed

Diag-resp. CF

Diag-Response is

| completed and
the server sends

STRT-Resp. FF——-

the STRT-response.

STRT-CF
STRT-CF

Figure 17 — Event occurrence during a message in progress

i) The ResponseOnEvent service shall only apply to transient events and conditions. The server shall retum
a response once per event occurrence. For a condition that is continuously sustained over a period of
time, the response service shall be executed only one time at the initial occurrence. In case the
eventType is defined so that serviceToRespondTo-responses could occur at a high frequency, then
appropriate measures have to be taken it order to prevent back to back serviceToRespondTo-responses.
A minimum separation time between serviceToRespondTo-responses could be part of the
eventTypeRecord {(vehicle-manufacturer-specific).

Tables 36 and 37 define the subfunction parameters applicable for the implementation of this service on CAN.

Table 33 defines the data parameters applicable for the implementation of this service on CAN.

Table 36 — eventType subfunction bit 6 definition — StorageState

Bit6 Description Cwvt Mnemonic
value
0 doNotStoreEvent M DNSE
1 storeEvent U SE
Ar

Copyright Intemational Organization for Standardiration
Reproduced by IHS under lcense with 150
No raproduction or networking pernitted without Bcanse from |HS

© 1S0O 2004 — Al rights reserved

Nat for Resale

ISO 15765-3:2004(E)

Table 37 — Subfunction parameter definition

Hex Description Cvt Mnemonic
{bit 5-0)

stopResponseOnEvent STPRCE

onDTCStatusChange

ONDTCS

OTI
QCOoCID
RAE
STRTROE
CLRROE
OCOV

onTimerintermupt

onChangeQfDatzaldentifier

reportActivatedEvents

startResponseOnEvent

clearResponseOnEvent

S|lclcjclc|lQ|lCc|C

onComparisonOfvalues

Table 38 — Data parameter definition — serviceToRespondToRecord.serviceld

Recommended sarvices (ServiceToRespondTo) RequestService Identifier (Sid)

ReadDataByldentifier
ReadDTCIinformation

RoutineControl
InputOutputControlByldentifier

9.2.9 LinkControl (87 hex) service

Table 39 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 39 — Subfunction parameter definition

Hex Description Mnemonic
{bit 6-0)

01 verifyBaudrateTransitionWithFixed Baudrate VBTWFBR

02 verifyBaudrate TransitionWithSpecificBaudrate U VBTWSEBR

03 fransitionBaudrate T8

9.3 Data transmission functional unit

9.3.1 ReadDataByldentifier {22 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.,

9.3.2 ReadMemoryByAddress (23 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on

CAN.
. = ll"":t.i"\i;:ﬂﬂil AT ...ghts ré:?;é:‘"*éa-“"-""" 47

Reproduced by HS under kceros with IS0
Mo 1eproduction or networking pormitted without Boenss from IHS Not for Resole

1ISO 15765-3:2004(E)

9.3.3 ReadScalingDataByldentifier(24 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.3.4 ReadDataByPeriodicldentifier (2A hex) service

The two types of response messages as defined for this service in 1ISO 14229-1 are mapped onto CAN as
follows.

— Response message type #1 (including the service identifier, the echo of the periodicDataldentifier and the

data of the periodicDataldentifier): This type of response message is mapped onto a USDT3) message,
using the same response CAN identifier as used for any other USDT response message. The USDT
message for a singte periodicDataldentifier shall not exceed the size of a single CAN frame, which means
that the complete USDT response message shall fit into a SingleFrame N_PDU.

-- Response message type #2 (including the periodicDataldentifier and the data of the
periodicDataldentifier); This type of response message is mapped onto a UUDT” message, using a
different CAN identifier as used for the USDT response message. The UUDT message for a single
periodicDataldentifier shall not exceed the size of a single CAN frame.

The mapping of the two response types lead to certain client and server requirements as listed in Tables 40
and 41.

Table 40 — Periodic transmission — Requirements for the response type #1 message mapping

Message type Client request Server response Further server restrictions
requirements requirements

Any other new incoming request shall be pricritized and the periodic
transmission may be delayed.

The periodic response is processed in the server as a regular USDT
message {with protocol controt information (PCI), service identifier

Only single-frame | 519y and periodicDataldentifier) and is processed by the server

usDT

responses for | network layer. This means that a maximum of 5 data bytes are
uses the same penodic fransmission | ayailable for the data of a periodicDataldentifier when using normal
CAN identifier for No restrictions Multi-frame addressing and 4 data bytes when using extended addressing for the

diagnostic
communication and
periadic
transmission

responses to new response message.
{non-periodic-
transmission}

requests possible

For an incoming multi-frame request message, any scheduled
penodic transmission shall be delayed in the server immediately after
the N_USDataFF.ind of a multi-frame request or the N_USData.ind of
a SingleFrame request is processed by the application. Once the
complete service IS processed (including the final response
message), the transmission of the perodic messages shall be
continued.

3) USDT Unacknowledged Segmented Data Transfer, 1SO 15765-2 network layer, includes protocot controf
information for segmented data transmission.

4) UUDT Unacknowledged Unsegmented Data Transfer, single CAN frames, do not include protocol controi
information, which results in max. 7/8 data bytes for normal/extended addressing.

Cupwigl'ﬂ:lnjlzmnaﬁuﬂ Organization for Standardization © 150 2004 - All rights reserved

Reproduced by 1HS under kiconss with 150
No reproduction or networking permitted without Roense from IHS Not for Resale

— —_—— e —— = -

ISO 15765-3:2004(E)

Table 41 — Periodic transmission — Requirements for response type #2 message mapping

Message type

vJupT

uses a different
CAN identifier for
periodic
transmission

Client request
requirements

No restrictions

Server response
requirements

Only single-frame
responses for

periodic transmission

Multi-frame
responses to new
(non-periodic-
transmission)

requests are possible

Further server restrictions

The request for periodic transmission is processed as a regular
diagnostic request and the response is sent via the network layer (as
a USDT message with service identifier 6A hex).

On receiving the N_USData.con that indicates the completion of the
transmission of the positive response, the application stars an
independent scheduler, which handles the periodic transmission.

The scheduler in the server processes the periodic transmission as a
single frame UUDT-message In a by-pass (.e. writes the UUDT
message directly to the CAN-controller/data link layer driver without
using the network-layer).

For an UUDT-message there is no need to include protocol control
infformation (PCI} and service identifier (Sld), only the periodic
identifier is included, so a maximum of 7 data bytes can be used for
the data of a pericdicDataldentifier for normal addressing and 6 data
bytes for extended addressing.

—— — 1t -

Figures 18 and 18 graphically depict the two types of penodic response messages, as the server should
handle them. Furthermore, the figures show that the periodically transmitted response messages do not have
any influence on the S3g,n ., timer of the server, For both figures it is assumed that a non-defaultSession has
‘been activated prior to the configuration of the periodic scheduler (the ReadDataByPeriodicldentifier service

requires a non-defaultSession in order to be executed).

—_—— e e — ———— -

Copyright Ivamutional Crganizaion for Standardization J1ILS MEserved 49
Reproduced by IHS under canss with S0

No reproduction or nebworking pocmadtted wihean Scense Wom THS Mot for Resale

ISO 156765-3:2004(E)

client server
| AN AN
N_USData.req a =
£
<
2 5
2@
start f-; *
N_USData.con —@ I I t @— N_USData.ind
PZcaN_Client P2caN_server Stop]
‘ N _USData.
3 | start of response ®_ -SData.req
S3client el
© &5
Sa
z 2
_ f ﬁ start
N_U?Data.md stop e N _USData.con
: !
I o @— N_USData.req
| g |
X & <
N_USData.ind L. N_USData.con
| o @—N_USData.req
: 52
| -% E S3server [
N_USData.ind T N_USData.con
l S @— N_USD'ata.req
. T O :
| i
5 S
N_USData.ind - N_USData.con
N_USData.req —@ N
‘ . ! @— N_USDataFF.ind
o stop
. —
-
3 .
‘ start
N_USData.Eﬂn -® | | @_ N_USData.ind
' PZean_crien Pean_server . The periodic scheduler
l { l is stopped during the
k = N_USData.req rocessing of th
. tart of O_ - P g ofthe
N_USDataFF.ind stop start of response diagnostic service.
N_USDatareq —{ | }— Any TesterPresent
timeout = @ ' that is received during a
So 5 I disabled S3g5gngr timer
E. o E : will be ignored by
start & = I the server
N_USData.con @— (N_LISData.ind)
i start |
N_USData.ind @-N_USData.cun _J
S3ctient BN @— N_USData.req
2e
5
N_USData.ind L N_USData.con
o @—N__USDéta.req
ge
2 <
N_USData.ind i - N_USData.con
N_USData.
~oovala.req |\ timeout = |
E a S3server ‘
T
5 ®
start h
N_USData.con —@ - Stop! N_U3Data.ind
start @ I

EN
Copyright intemational Organization for Standardiration
Reprogucad by IHS under Soensa with 150

Mo reproduciion of networking penmitied without Bcanse from IHS

AN

© 150 2004 — All rights reserved

L1

1ISO 15765-3:2004(E)

2 The diagnostic application of the client starts the transmission of the ReadDataByPeriodicldentifier (2A hex) request
message by issuing a N_USData.req to its network layer. The network layer transmits the ReadDataByPeriodicldentifier
(2A hex) request message to the server. The request message can either be a single-frame message or a multi-frame
message (depends on the number of periodicDataldentifier contained in the request message). For the example given, it
is assumed that the request message is a SingleFrame message.

t‘ The completion of the request message is indicated in the client via N_USData.con. Now the response timing as
flescribed in 6.3.5.1.1 and 6.3.5.1.2 applies.

t The completion of the request message is indicated in the server via the N_USData.ind. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies. Furthemmore, the server stops its S3¢,,, ., timer.

d For the figure given, it is assumed that the client requires a response from the server. The server shall transmit the
ReadDataByPeriodicldentifier positive response message to indicate that the request has been processed and that the
transmission of the penodic messages will start afterwards.

€ The compietion of the transmission of the ReadDataByPeriodicldentifier response message is indicated in the server
via N_USData.con. Now the server restarts its S3 timer, which keeps the activated non-default session active as long
as it does not time out.

I The server starts to transmit the pericdic response messages (SingleFrame message). Each periodic message
utihizes the network layer protocol and uses the response CAN identifier that is also used for any other response message.
Therefore, the server issues a N_USData.req to the network layer each time a periodic message is transmitted and no
other service is currently in the process of being handled by the server. For the example given, it is assumed that the
server is able to transmit three (3) periodic messages prior to the next request message that is issued by the client. The
transmission of the periodic response messages has no influence on the S3ganer fimer (see 6.3.5.4).

9 The diagnostic application of the client starts the transmission of the next request message by issuing a
N_USData.req to its network layer. The network layer transmits the request message to the server. The request message
can either be a single-frame message or a multi-frame message. For the example given, it is assumed that the request
message is a multi-frame message.

h The completion of the request message is indicated in the client via N_USData.con. Now the response timing as
described tn 6.3.5.1.1 and 6.3.5.1.2 applies.

' Once the start of a request message is indicated in the server via N_USDataFF .ind (or N_USData.ind for SingleFrame
request messages) while a periodic scheduler is active, the server shall temporarily stop the periodic scheduler for the
duration of processing the received request message. Furthermore, any time the server is in the process of handling any
diagnostic service it stops its S3g, ¢, timer.

I The completion of the multi-frame request message is indicated in the server via the N_USData.ind. Now the
response timing as described in 6.3.5.1.1 and 6.3.5.1.2 applies. The scheduler for the transmission of the periodic
messages remains disabled.

K For the figure given, it is assumed that the client requires & response from the server. The server shall transmit the
positive (or negative) response message via Issuing N_USData.req to its network layer. For the example, it is assumed
that the response is a multi-frame message.

| When the 83 e timer times out in the client, then the client transmits a functionally addressed TesterPresent (3E
hex) request message to reset the 83, timer in the server.

M The server is in the process of transmitting the multi-frame response of the previous request. Therefore, the server
shall not act on the received TesterPresent (3E hex) request message, because its S3g,,, ., timer is not yet re-activated.

M When the diagnostic service is completely processed, then the server restarts its S3c.ver fimer. This means that any
diagnostic service, including TesterPresent (3E hex), resets the S3¢,, ., timer. A diagnostic service is meant o be in
progress any time between the start of the reception of the request message (N_USDataFF.ind or N_USData.ind receive)
and the completion of the transmission of the response message, where a response message is required, or the
completion of any action that is caused by the request, where no response message is required {point in time reached that
would cause the start of the response message). This includes negative response messages including response code
78 hex. The server re-enables the periodic scheduler when the service is completely processed {final response message
completely transmitted).

O The server restarts the transmission of the periodic response messages (SingleFrame message). Each periodic
message utilizes the network layer protocol and uses the response CAN identifier that is also used for any other response
message. Therefore, the server issues a N_USData.req to the network layer each time a periodic message is transmitted
and no other service is currently in the process of being handled by the server. The transmission of the periodic response
messages has no influence on the 53¢, timer (see 6.3.5.4).

P Once the S3p;,, timer is started in the client (non-defaultSession active), this causes the transmission of a

functionally addressed TesterPresent (3E hex) request message, which does not require a response message, each time
the 83yt limer times out.

9 Upon the indication of the completed transmission of the TesterPresent (3E hex) request message via
N_USData.con of its network layer, the client once again starts its S3.,,, timer. This means that the functionally
addressed TesterPresent (3E hex) request message is sent on a periodic basis every time S3;,,, times out.

Figure 18 -— Response message type #1 handling

Server

Copy st tematornl Orgaicason ke Sevmcios GH1S reserved 51
Reproduced by [HS under hoense with IS0

NO reproduction of nitworking permitted without icense fiom [HS Not for Resale

1SO 15765-3:2004(E)

client \ \ server
]

N_USData.req a v,
2
<€ “in
o 4l
3
E —
start al
N_USData.con —@ 1 | L T ! @— N_USData.ind
| chAN_Ctient PZEAN_EEWEI stop ,
* d N Data.
3 | start of response O— ~UsData.req
= @
S3Client % &
. ' y start
N_USData.ind < @— N_USData.con 5
‘ stop t
‘ 7S @- N_UUData.req
- O
| |
5%
| N_UUData.ind o N_UUData.con
o @- N_UUData.req
i
€ E S3server ‘
N_UUData.ind o N_UtData.con
| e @— N_UUData.req
| 2 |
F:
N _UUData.ind = - N_UUData.con
N_USData.req —@ = ‘ | ~
‘ @ t @— N_USDataF¥.ind
start & =P |
N_USData.con —@ l ®~ N_USData.ind
\ P2¢an_cllent P2 an_setver |
& g @ N_UlData.req
: 5 a
| |
g
N_UUData.ind Q. N_UUData.con
1
| ! @- N_USData.req
N_USDataFF.ind t' start of response | Any TesterPresent
| P o @- N_UUData.req that is received
| ' E {0 | >- during a disabled
a2 S3 timer will be
, g © Server
N_UUData.ind ' N_UUData.con ignored by the server
N_USData.req —@ = @
timeout @ th
| Sn 5
: G o
| start 5 o ‘
N_USData.con @— (N_USData.ind)
|
& I
% E E —@— N_UUD?ta.req
@ <L N UUData.con
N_UUData.ind e o -
N_USData.ind @— N_USData.con _J
I
! S3cien T ——@— N_UtData.req
| 22 |
2 <
N_UUData.ind Q. N_UUData.con
I
] o @— N_UUData.req
‘ 5 O
o P ‘
| 5 |
N_UUData.ind . - Q. N_UUData.con
N_USData req —@ 1 —
- timeout S Sdgerver
| g
5
: start ..5 !
i N_USData.con N_USData.ind

Copyright [nt:nn?aﬂmal Organization for Standandiration © SO 2004 — All rights reserved

Reproduced by IHS under boanaa with 1ISO
No reproduciion or networking permitied without koense from [HS Not for Resale

wi

ISO 15765-3:2004(E)

2 The diagnostic application of the client starts the transmission of the ReadDataByPeriodicldentifier (2A hex) request
message by issuing a N_USData.req 1o its network layer. The network layer transmits the ReadDataByPeriodicldentifier
(2ZA hex) request message to the server. The request message can either be a single-frame or multi-frame message
(depends on the number of periodicDataldentifier contained in the request message). For the example given, it is
assumed that the request message is a SingleFrame mesgsage.

b The completion of the request message is indicated in the client via N_USData.con. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.

¢ The completion of the request message is indicated in the server via the N_USData.ind. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies. Furthermore, the server stops is S3g, .., timer.

d |t is assumed that the client requires a response from the server. The server shall transmit the
ReadDataByPeriodicldentifier positive response message to indicate that the request has been processed and that the
transmission of the periodic messages will start afterwards, ’

€ The completion of the transmission of the ReadDataByPeriodicldentifier response message is indicated in the sen.fer
via N_USData.con. Now the server restarts its S3g,,,, timer, which keeps the activated non-default session active as long
as it does not time out.

f The server starts to transmit the periodic response messages (single-frame message). Each periodic message is &
UUDT message and uses a different CAN identifier as used for any other response message (USDT CAN identifier).
Therefare, the server issues a N_UUData.req each time a periodic message is transmitted independent of any other
service currently processed by the server. This means that the transmission of the periodic response messages continues
even when the server is in the process of handling another diagnostic service request. The transmission of the periodic
response messages has no influence on the 834, ., timer (see 6.3.5.4).

9 The diagnostic application of the client starts the transmission of the next request message by issuing a
N_USData.req o its network layer. The network layer transmits the request message to the server. The request message
can either be a single-frame or multi-frame message. For the example given, it is assumed that the request message is a
multi-frame message.

h The completion of the request message is indicated in the clienf via N_USData.con. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.

! The start of a request message is indicated in the server via N_USDataFF.ind {or N_USData.ind for SingleFrame
request messages) while a periodic scheduler is active. The server does not stop the periodic scheduler for the duration of
processing the received request message. This means that the server transmits further periodic messages for the duration
of processing the diagnostic service. The client shall be aware of receiving these periodic response messages.
Furthermore, any time the server is in the process of handling any diagnostic service it stops its S3g,, ., timer.

I The completion of the multi-frame request message is indicated in the server via the N_USData.ind. Now the
response fiming as described in 6.3.5.1.1 and 6.3.5.1.2 applies.

K For the figure given, it is assumed that the client requires a response from the server. The server shall transmit the
positive (or negative) response message via issuing N_USData.req to its network fayer. For the example, it is assumed
that the response is a multi-frame message. While the multi-frame response message is transmitted by the network laver,
the penodic scheduler continues to transmit the periodic response messages.

I When the S3,,, timer times out in the client, then the client transmits a functionally addressed TesterPresent
(3E hex) request message to reset the S3¢,. . timer in the server.

M The server is in the process of transmitting the multi-frame response of the previous request. Therefore, the server
shall not act on the received TesterPresent (3E hex) request message, because its S3gener timer is not yet re-activated.

N When the diagnostic service is completely processed, then the server restarts its S3¢,,. ., timer. This means that any
diagnostic service, including TesterPresent (3E hex), resets the S3g, ., timer. A diagnostic service is meant to be in
progress any time between the start of the reception of the request message (N_USDataFF.ind or N_USData.ind receive)
and the compietion of the transmission of the response message, where a response message is required, or the
completion of any action that is caused by the request, where no response message is required (point in time reached that
would cause the start of the response message). This includes negative response messages including response code
78 hex.

© Once the S3p, timer is started in the client {non-defaultSession active), this causes the transmission of a
functionally addressed TesterPresent (3E hex) request message, which does not require a response message, each time
the S34jam timer times out.

P Upon the indication of the completed transmission of the TesterPresent (3E hex) request message via N_USData.con
of its network layer, the client once again starts its S3.;,. timer. This means that the functionally addressed
TesterPresent (3E hex) request message is sent on a periodic basis every time S3,, times out.

Figure 19 — Response message type #2 handling

Copyright intemationsl Wﬂ 'ﬁn.: gw“'m“" ':ghtE TEEEWEd 53
Reproducad by IHS under Ecanse with IS0
MO raroogucion o Retworking permtisd without Sconse rom 1HS Not for Hesols

— —— -

ISO 15765-3:2004(E)

Table 42 defines the data parameters applicable for the implementation of this service on CAN.

Tabie 42 — Data parameter definition — TransmissionMode

I I S =%
01 sendAtSlowRate U SASR
02 sendAtMediumRate U SAMR
03 sendAtFastRate U SAFR
04 stopSending U S8

9.3.5 DynamicallyDefineDataldentifier {2C hex) service

When the client dynamically defines a periodicDataldentifier and the total length of the dynamically defined
periodicDataldentifier exceeds the maximum tength that fits into a single frame periodic response message,
then the request shall be rejected with a negative response message including negative response code
31 hex (requestOutOfRange). See ReadDataByPeriodicldentifier (2.3.4) for details regarding the periodic
response message format.

When multiple DynamicallyDefineDataldentifier request messages are used to configure a single
pericdicDataldentifier and the server detects the overrun of the maximum number of bytes during a
subsequent request for this periodicDataldentifier, then the server shall leave the definition of the
periodicDataldentifier as it was prior to the request that lead to the overrun.

Table 43 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 43 — Subfunction parameter definition

Description Mnemonic

defineByldentifier

defineByMemoryAddress

clearDynamicallyDefinedDataldentifier

9.3.6 WriteDataByldentifier {(2E hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.3.7 WriteMemoryByAddress (3D hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.4 Stored data transmission functional unit

9.41 ReadDTCIinformation (19 hex) service

Table 44 defines the subfunction parameters applicable for the imptementation of this service on CAN.

Copyright Inimktional Organizafion for Standert&zaton e © 1SO 2004 — Al rights reserved
Rapmduced by IHS undar Beensa with 150
Mo reproduction or networking permitted withowut cense from IHS Mot for Recake

ISO 15765-3:2004(E)

Table 44 — Subfunction parameter definition

Hex Description Cwvt Mnemonic
(bit 6-0)
01 reportNumberOfDTCByStatusMask U RNODTCBSM
02 reportDTCByStatusMask M RDTCBSM
03 reportDTCSnapshotidentification U RDTCSSI
04 reportDTCSnapshotRecordByDTCNumber U | RDTCSSBEDTC
. 05 reportDTCSnapshotRecordByRecordNumber U RDTCSSBRN
06 reportDTCExtendedDataRecordByDTCNumber U RDTCEDRBDN
. 07 reportNumberOfDTCBySeverityMaskRecord U RNODTCBSMR
| 08 reportDTCBySeverityMaskRecord U RDTCBSMR
| 09 reportSeveritylnformationOfDTC | U RSIODTC
aA raportSupportedDTC U RSUPDTC
0B reportFirstTestFailedDTC U RFTFDTC
0C reportFirstConfimedDTC . U RFCDTC
0D reportMostRecentTestFailedDTC U RMRVDTC
OE reportMostRecentConfirmedDTC U RMRCDTC
OF reportMirrorMemoryDTCByStatusMaskr U RMMDTCRBSM
10 reporiMirrorMemoryDTCExtendedDataRecordByDTCNumber U RMMDEDRBDN
11 reportNumberOfMirrorMemoryDTCByStatusMask U | RNOMMDTCBSM
12 reportNumberQOfEmissions RelatedOBDDTCByStatusMask C |RNOOCBDDTCBSM
13 reportEmissionsRelatedOBDDTCByStatusMask C ROBDDTCBSM

Table 45 defines the DTC status bits applicable for the implementation of this service on CAN.

Where a DTCFailureTypeByte is used when implementing this service on CAN, the DTCFailureTypeByte
definitions shall be in accordance with 1SO 15031-6.

: Table 45 — DTC status bit definitions

Description Cvt Mnemonic
Non-
. Emission Emission
0 testFailed U u TF
1 testFailed ThisMonitoringCycle M | C, TEFTMC
2 pendingDTC M U PDTC
3 confirmedDTC M M COTC
4 testNotCompletedSincel astClear G, C, TNCSLC
5 testFailedSinceLastClear C, C, TFSLC
B testNotCompleted ThisMonitoringCycle M M TNCTMC
| 7 wamingindicatorRequested M U WIR
C, Bit1 (testFailedThisMonitoringCycle) is Mandatory if Bit 2 {pendingDTC) is supported. Bit 1 {testFailedThisMonitoringCycle) is User
Optional if Bit 2 {pendingDTC) is not supported.

G, Bit 4 (testNotPassedSincelastClear) and Bit § (testMotFailedSincelastClear) shalt always be supported together.

oo YW My oA AR

Coyright Intermational Organizstion for Standaraizetion JNILS reserved 55
Reproduced by 1HS under Boanse with 150
NO resroduction or networking penmitted without Boense from |HS Mot for Resala

. _. _ _ _ _ L . o

-

ISO 15765-3:2004(E)

9.4.2 ClearDiagnosticlnformation (14 hex) service

Table 46 defines the data parameters applicable for the implementation of this service on CAN.

Table 46 — Data parameter definition — GroupOfDTC

Hex Description

000000 — FFFFFE | Individual / Single DTC

Mnemonic

FFFFFF All Groups (all DTCs)

9.5 Input/Output control functional unit

9.5.1 InputOutputControlByldentifier (2F hex) service

In the case where the first byte of the controlOptionRecord is used as an InputQOutputControiParameter, then
Table 47 defines the data parameters applicable for the implementation of this service on CAN.

Table 47 — Data parameter definition -— inputOutputControlParameter

Description

retumControiToECU

Mnemonic

resetToDefault

freezeCurrentState

shortTermAdjustment

9.6 Remote activation of routine functional unit

9.6.1 RoutineControl {31 hex) service

Table 48 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 48 — Subfunction parameter definition

Description

startRoutine

Mnemonic

stopRoutine

requestRoutineResuits

| ~f
Copyright Intermatonal Organization for Standardizaton
Regroduced by IHS under Bcense with 150
Mo reproduction or networking permiitad without lcenae from IHS

Not for Resals

© 150 2004 — All rights reserved

_,_jF _ - m—— - - - - ——— - —_ _— _— —_—_— S — S —— — —— = — - —_

ISO 15765-3:2004(E)

9.7 Upload/Download functional unit

9.7.1 RequestDownload (34 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN. -

9.7.2 RequestUpload {35 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.7.3 TransferData (36 hex) service

There are neither additionat requirements nor restrictions defined for this service for its implementation on
CAN.

9.7.4 RequestTransferExit (37 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation an

bt _ P lt"_-nt;\nn.- AN 'ghts reserved 57
Reproduced by [HS under Boanss with 150
Nc reproducton of networking permitted without kcense from IHS Mot for Resale

ISO 15765-3:2004(F)

10 Non-volatile server memory programming process

10.1 General information

This clause defines a framework for the physically oriented download of one or muiltiple application
software/data modules into non-volatile server memory. The defined non-volatile server memory programming
sequence addresses

a) vehicle-manufacturer-specific needs in performing certain steps during the programming process, while
being compliant with the general service execution requirements as specified in 1SO 14229-1 (such as the
sequential order of services and the session management),

b} the CAN bus being a network with multiple nodes connected, which interact with each other, using normal
communication CAN messages,

c) use of either a physically oriented vehicle approach (point-to-point communication — servers do not
support functional diagnostic communication) or a functionally oriented vehicle approach (point-to-point
and point-to-multiple communication — servers support functional diagnostic communication). A single
vehicle shall only support one of the above mentioned vehicle approaches.

The programming sequence is divided into two programming phases. All steps are categorized based on the
foliowing types.

a) Standardized steps: this type of step is mandatory. The client and the server shall behave as specified.

b)E Optional/recommended steps: this type of step is optional. Optional steps contain recommendations on
how an operation shall be performed. Where the specified functionality is used, then the client and the
server shall behave as specified.

€) Vehicle manufacturer specific -steps:; the usage and content of this step is left at the discretion of the
vehicle manufacturer and shall be in accordance with ISO 14229-1 and ISO 15765-3.

The defined steps can either be

-— functionally addressed to all nodes on the CAN network (functionally oriented vehicle approach, servers
support functional diagnostic communication), or

— physically addressed to each node on the CAN network (physically orienfed vehicle approach, servers do
not support functional diagnostic communication).

Each step of the two programming phases of the programming procedure will specify the allowed addressing
method for that step. The vehicle-manufacturer-specific steps can either by functionally or physically
addressed (depends on the OEM requirements).

See Figure 20.

cmminf-gum Orgranization for Standandization © 1S0 2004 - All rights reserved

Raproduced by |HS undor Toanee with 150
Mo reproduction or networking permitted without Ecanse from JHS Not for Resala

SO 15765-3 programming environment

P

Master execute (

Pre-programming step

h,

-

_ ' ™ r‘ ™ y Y
Progamming execute
(Up to n programming [Programming Frogramming
steps running step step
in parallef) .) L J . y
- -
y Y
Post-programming step
t :
Master execute [synchronized between all programming steps

.

?-

s

ISO 15765-3:2004(E)

Setup of CAN
hetwark for
programming

Download of
software and
data

Re-sync. of
CAN network

Programming
}- phase #1
(mandatory)

’

Master execute [

Pre-programming step

Setup of CAN
network for
server
configuration

Final server
configuration

3

Programming
> phase #2

-

\ J
r A
: 4 D 4 ™ - ™
Progamming execute _ Ooti
{up to n programming Optrunaf ptmna‘l
, programming y programming
steps running step step
in parallel) .) . D .)
\. v
o
Post-programming step
Master execute [synchronized between all programming steps J

Ny

(optional)

Re-sync. of
CAN network

Figure 20 — ISQ 15765-3 non-volatile server memory programming process overview

a} Programming phase #1 — download of application software and/or application data

Within pregramming phase #1, the application software/data is transferred to the server.

1) Optional Pre-Programming step — Setup of CAN network for programming

The pre-programming step of phase #1 is optional and used to prepare the CAN network for a
programming event of one or multiple servers. This step provides certain hooks where a vehicle
manufacturer can insert specific operations that are required for the OEM vehicle’'s CAN network
(perform wake-up, determine communication parameters, read server identification data, etc.).

This step also contains provisions to increase the baud rate to improve download performance. The
usage of this functionality is optional and can only be performed in case of a functionally oriented
vehicle approach (functional diagnostic communication supported by the servers).

The request messages of this step can either be physically or functionally addressed.

ﬂ'lr:-ﬁi:ﬂnn At —ghts resewed
Reprogocad by IHS under Boanss with S0

Ho reprttuchion of neiworking permittad without koanse om THS

Mot for Resale

59

T

1SO 15765-3:2004(E)

2)

3}

Server Programming step — Download of application software and application data

The server programming step of phase #1 is used to program one or multiple servers {download of
application software and/or application data and/or boot software).

Within this step, only physical addressing is used by the client, which allows for parallel or sequential
programming of multiple nodes. In the case where the pre-programming step is not used, then the
DiagnosticSessionControl (10 hex) with subfunction programmingSession can also be performed
using functional addressing.

At the end of this step, the reset of the re-programmed server(s) is optional. The use of the reset
leads to the requirement to implement programming phase #2 in order to finally conclude the
pregramming event by physically clearing DTCs in the re-programmed server(s), because after the
physical reset during this step the re-programmed server(s) enable(s) the default session and
perform(s) their normal mode of operation while the remaining server(s) have still disabled normal
communication. The re-programmed server(s) wiff potentially set DTCs.

Furthermore, it shall be considered that the re-programmed server could activate a new set of
diagnostic CAN identifiers, which differs from the ones used when performing a programming event
(see 10.3).

If either the server that was re-programmed does not change its communication parameters or the
client knows the changed communicaticn parameters, then following the reset certain configuration
data can be written to the re-programmed server.

Post-Programming step — Re-synchronization of CAN network after programming

The post-programming step of phase #1 concludes the programming phase #1. This step is
performed when the programming step of each reprogrammed server is finished.

The request messages of this steps can either be physically or functionally addressed.

The CAN network is transitioned to its normal mode of operation. This can either be done via a reset
using the ECUReset (11 hex) service or an explicit transition to the default session via the
DiagnosticSessionControl (10 hex) service. The DiagnosticSessionControl (10 hex) service shall not
enable potentially present valid application software in the server (no implicit ECUReset).

b) Programming phase #2 — Server configuration {optional)

Programming phase #2 is an optional phase in which the client can perform further actions that are
needed to finally conclude a programming event (write the VIN, trigger Immobilizer learn-routine, etc.).
For example, if the server(s) that has (have) been re-programmed is (are) physicaily reset during the
seﬁver programming step of programming phase #1, then DTCs shall be cleared in this server(s).

Wﬁen executing this phase, the downloaded application software/application data is running/activated in
the server and the server provides its full diagnostic functionality.

1)

cn

Pre-Programming step — Setup of CAN network for server configuration

The pre-programming step of phase #2 is used to prepare the CAN network for the programming
step of phase #2. This step is an optional step and provides certain hooks where a vehicle
manufacturer can insert specific operations that are required for OEM vehicle’s CAN network (e.g.
wake-up, determine communication parameters).

The request messages of these steps can either be physically or functionally addressed.

Copyright Intemational Organization for Standandization © 150 2004 — All rights reserved
Reproduced by [HS undey icense with 150
No raproduction or networking permitiod without Bcense from HS Mot for Resale

2)

3)

IS0 16765-3:2004(E)

Programming step — Final server configuration

The programming step is used to, for example, write data (e.g. VIN), after the server reset.
The content of this step is vehicle-manufacturer-specific.

If the server(s) that has (have) been re-programmed are physically reset at the end of the server
programming step of programming phase #1, then DTCs shall be cleared in this server(s) during the
programming step of phase #2.

The request messages of these steps are physically addressed.

Post-Programming step — Re-synchronization of CAN network after final server configuration
The post-programming step concludes programming phase #2. This step is performed when the
programming step of each reprogrammed server is finished. The CAN network is transitioned to its

normal mode of operation.

This step can either be functionally oriented (setvers support functional diagnostic communication) or
physically oriented (servers do not support functional diagnostic communication).

The request messages of these steps can either be physically or functionally addressed.

10.2 Detailed programming sequence

10.2.1 Programming phase #1 — Download of application software and/or application data

10.2.1.1

Pre-Programming step of phase #1 — Setup of CAN network for programming

Figure 21 graphically depicts the functionality embedded in the pre-programming step.

10.2.1.2

Programming step of phase #1 — Download of application software and data

Following the pre-programming step, the programming of one or multiple servers is performed. The
programming sequence applies for a programming event of a single server and is therefore physically

oriented.

When mulliple servers are programmed, then multiple programming events either run in parallel or

will be performed sequentially.

Figure 22 graphically depicts the functionality embedded in the programming step of phase #1.

10.2.1.3

Post-Programming step of phase #1 — Re-synchronization of CAN

Figure 23 graphically depicts the functionality embedded in the post-programming step of phase #1.

L lqﬁ';»nn F A .:ghts rEEEW‘Ed 6 1

Reproduced by IHS undor oonss st 150

Ne regaoduction of hetworking permithed without icense from IHS Mot for Resale

—_—— -

. — -

ISO 15765-3:2004(E)

Vehicle-manufacturer
specific steps

Standardized steps Optional/Recommended

steps
STP1

L& ¥ 3 3 T

I

i Y

Pre-initialization of the
CAN link

-

!
@ Diagnostic Session Contro!

(extended Diagnostic
Session)

'
,
. S S —

I

Post-initialization of the) @
CAN link

!

- ™

Control DTC setting
L(DTC Setting Type = off)

!

f h

Communication control
(disable non-diagnostic
communication)

&)

O

I

, \
Read server identification
assign dynamic CAN lds @

prepare server(s) for prog.

l |

-————'ﬂr———-———_._—.-—-.—.-.___—.

Link control
@ L (verify baudrate)
y
Link control
L (switch baudrate))

[

Copyright Inmmeionsl Organization for Stondardization © IS0 2004 — Al rights reserved

Reproduced by THS under icense with 150
INO NBprOCUCTIONT ¢ ttwOTRingg permittad withowt Bcense from |HS Not for Resake

—_—_— -

ISO 15765-3:2004(E)

2 Prior to any communication on the CAN link the network shall be initialized, which means that an initial wake-up of the
CAN network shall be performed. The wake-up method and strategy is vehicle-manufacturer-specific and optionally to be
used. Furthermore, this step allows for a determination of the server communication parameters such as the nhetwork
configuration parameter serverDiagnosticAddress and the CAN identifiers used by the server{s). *

b In order to be able to disable the normal communication between the servers and the setting of DTCs, it is required to
start a non-defaultSession in each server where normal communicafion and OTCs shall be disabled. This is achieved via a
DiagnosticSessionControl (10 hex) service with sessionType equal to extendedDiagnosticSession. The request is either
transmitted functionally addressed to all servers with a single request message, or physically addressed to each server in
a separate request message {requires a physically addressed TesterPresent (3E hex) request message to be transmitted
to each server that is transitioned into a non-defaultSession). It is vehicle-manufacturer-specific whether response
messages are required or not.

¢ Following the transition into the extendedDiagnosticSession, further vehicle-manufacturer-specific CAN linki

initialization steps can optionally be performed.

EXAMPLE A vehicle-manufacturer-specific additionat initialization step can be to issue a request that causes gateway devices tu;f
perform a wake-up on all CAN links which are not accessible by the client directly through the diagnostic connector. The gateway will';

keep the CAN link{s) awake as long as the non-defaultSession is kept active in the gateway.

d The client disables the sefting of DTCs in each server using the ControlDTCSefting (85 hex) service with
DTCSettingType equal to "off”. The request is either transmitted functionally addressed to all servers with a single request
message, or transmitted physically addressed to each server in a separate request message. It is vehicle-manufacturer-
specific whether response messages are required or nof.

€ The client disables the transmission and reception of non-diagnostic messages using the CommunicationControl
(28 hex) service. The controlType parameter and communicationType parameter vajues are vehicle-manufacturer-specific
{one OEM might disable the transmission only while another OEM might disable the transmission and the reception based
on vehicle-manufacturer-specific needs). The request is either transmitted functionally addressed to all servers with a
single request message, or transmitted physically addressed to each server in a separate request message. It is vehicle-
manufacturer-specific whether response messages are required or not.

I After disabling nommal communication an optional vehicle-manufacturer-specific step follows, which allows the
following.

-— Reading the status of the server(s) to be programmed (e.qg. application software/data programmed).
— Reading server identification data from the server(s) to be programmed:
1} identification (see ISO 14229-1, dataldentifier definitions)
applicationSoftwareldentification, applicationDatafdentification, bootSoftwareldentification;
2) fingerprint (see ISO 14229-1, dataldentifier definitions)
applicationSoftwareFingerprint, applicationDataFingerprint, bootSoftwareFingerprint.
— Communication configuration such as dynamic assignment of CAN identifiers for a “Service ECU".

— Preparation of non-programmable servers for the upcoming programming event in order to allow them to optimize
their CAN hardware acceptance filtering in a way that they can handle a 100 % bus utilization without dropping CAN
frames (only accept the function request CAN identifier and its own physical request CAN identifier).

9 It is optional to increase the baud rate for the programming event in order to decrease the overall programming time
and to gain additional bandwidth to be able to program multiple servers in paraliel. A LinkControl {87 hex) service with
linkControt equal to either verifyBaudrateTransitionWithFixedBaudrate or verifyBaudrate TransitionWithSpecificBaudrate is
transmitted functionally or physically addressed to all servers with a single request message with responseRequired equal
to "yes”. This service is used to verify if a baud rate switch can be perfarmed. At this point the baud rate switch is not
performed. A second LinkControl (87 hex) service with subfunction transitionBaudrate is transmitted functionally
addressed to all servers with a single request message with responseRequired equal to *no”.

Once the request message is successfully transmitted, the client and all servers transition their baud rate to the previously
verified baud rate for the programming event. The servers have to transition the baud rate within a vehicle-manufacturer-
specific timing window. For this duration plus a safety margin, the client is not allowed to transmit any request message
onto the CAN network (including the TesterPresent request message). When the baud rate transition is successfully
performed, then the baud rate shall stay active for the duration the server switches between non-defaultSessions. Once

the server transitions to the defaultSession, it shall re-enable the normal speed baud rate of the CAN link it is connected
to.

The usage of the baud rate switch requires the support of functional diagnostic communication in each server on

a single CAN link that shall be transitioned to a higher baud rate, because the transition of the baudrate shall be
performed at the same time by all nodes (including the client).

Figure 21 — Pre-programming step of phase #1 (STP1)

A Iy ™y it X ALl 2

Copyright intemational Orgonizafion for Sandandoration ths reserved 63
Reproduced by [HS under lcenss with 150
N reproduction or networking permitted withouwt Bconse from IHS Not for Resale

e ———

ISO 15765-3:2004(E)

Standardized steps

73

-~

@ Diagnostic Session Controf
(programming session)

=

Opticnal/Recommended
steps

I T e el N S F s

Vehicle-manufacturer
specific steps

!

Whnite Data By Identifier @
(write fingerprint)

Routine Control
(check routine)

[©;

Routine Control
{check rautine) .

|®

Routine Control
(check routine)

o

rite configuration data @
-ate.

© 150 2004 - All rights reserved

| l |
Security Access @
(read Seed/send Key) {
- | |
I -
download erase-routine {
Request Download 4 |
Transfer Data @
— 4
Request Transfer Exit
- .'
!
Routine Control @
(erase memory)
download prog.-toutine 1
'{ Request Download
Ej Transfer Data @
| Request Transfer Exit
I {
download software/data { !
I Request Download
| Transfer Data @
] Request Transfer Exit
- r .
Routine Control
@ (check reprogramming
k dependencias)
[w
w]
|
cA]
Copyright imamationsl Organiration for Standeiiration
Reproduced by IHS under icense with 150
No reproduction or networking permitted without koenss from IHS Not for Resaly

S

- — -__(—_—— -

ISO 15765-3:2004(E)

8 The programming event is started in the server(s) via a physically/functionally addressed request of the

DiagnosticSessionControl {10 hex) service with sessionType equal to programmingSession. When the server(s) receive(s)
the request, it/they shall allocate all necessary resources required for programming. [t is implementation specific whether
the server(s) start(s) executing out of boot memory.

Y programming event should be secured. The SecurityAccess (27 hex) service shall be mandatory for emissions-
related and safety systems. Other systems are not required to implement this servica. The method on how a security
access is performed s specified in IS0 14229-1.

C It is vehicle-manufacturer-specific to write a “fingerprint” into the server memory prior to the download of any routine
and/or application software/data. The "fingerprint” identifies the one who modifies the server memory. When using this
option then the dataldentifiers bootSoftwareFingerprint, applicationSoftwareFingerprint and applicationDataFingerprint
shall be used to write the fingerprint information (see ISO 14229-1 - dataldentifier definitions).

d Where the server does not have the memory erase routine stored in pemanent memaory, then a download of the
memory erase routine shall be performed. The download shall follow the specified sequence with RequestDownload (),
TransferData, and RequestTransferExit.

€ it is vehicle-manufacturer-specific if a RoutineControl (31 hex) is used to check whether the download of the memory
erase routine was successful. Alternative methods are to provide the result in the RequestTransferExit positive response
message oOr via a negative response message including the appropriate negative response code to the
RequestTransferkxit request message.

f The memory of the server shall be erased in order to allow an application software/data download. This is achieved
via a routine, using the RoutineControl (31 hex) service to execute the erase routine.

9 Where the server does not have the memory programming routine stored in permanent memory, then a download of
the memory programming routine shall be performed. The download shall follow the specified sequence with
RequestDownload (34 hex), TransferData (36 hex), and RequestTransferExit {37 hex).

h 1t is vehicle-manufacturer-specific if a RoutineControl (31 hex) is used to check whether the download of the memory
program routine was successful. Alternative methods are to provide the result in the RequestTransferExit positive
response message or via a negative response message including the appropriate negative response code to the
RequestTransferkzxit request message.

I Each download of a contiguous block of application software/data to a non-volatile server memory location (either a
complete application software/data module or part of a software/data module} shall always follow the general data transfer
method using the following service sequence:

— RequestDownload (34 hex);
— TransferData (36 hex);
— RequestTransferExit {37 hex).

A single application software/data block might require multiple TransterData (36 hex) request messages to be completely
transmitted (this is the case if the length of the block exceeds the maximum network layer buffer size).

I it is vehicle-manufacturer-specific if a RoutineControl (31 hex) 1s used to check whether the download of the memory
program routine was successful. Alternative methods are to provide the result in the RequestTransferExit positive
response message or via a negative response message including the appropriate negative response code to the
RequestTransferExit request message.

% Once all application software/data blocks/modules are completely downloaded, the client shall verify if the download

has been performed successfully by initiating a routine in the server using the RoutineControl (31 hex) service. This

routine either triggers the server fo check

-—— the reprogramming dependencies and to perform all necessary action to proof that the download and programming
into non-volatile memory was successful, or

— it requests the server to calculate the checksum and submit the checksum to the client via a RoutineControl positive
response message {requestRoutineResuits) for a comparison with a checksum contained in the client.

The calculation method (e.g. CRC32, CRC186, 2 byte accumulated checksum, etc.) used is left at the discretion of the
vehicle manufacturer.

The checksum comparison method (e.g. server side, client side) is left at the discretion of the vehicle manufacturer.

Following the download of the application software/data, it is optional to physically reset the re-programmed server in
order to enable the downloaded application software/data. It shall be considered that the re-programmed server could
activate 2 new set of diagnostic CAN identifiers, which differs to the ones used when performing the programming event
{see 10.3). If either the server that was re-programmed does not change its communication parameters or the
programming environment know the changed communication parameters, then foliowing the reset certain configuration
data can be wntten to the re- programmed server.

I Following the download of the application software/data, it is vehicle-manufacturer-specific to perform further
operations such as writing configuration data (e.q. VIN, etc.) back to the server. This also depends on the functionally that
is supported by the re-programmed server when running out of boot.

Figure 22 — Programming step of phase #1 (STP2)

Ta o

Copyright intemational Ongmuicaten e Sanargomien gNtS reserved 65
Fapmduced by IHS under Sceten with, 180
MO repradection or networking permitted without Reenss fom IHS Not for Resala

—— ——— — —

1SO 15765-3:2004(E)

Standardized steps

| 1

@ ECU Reset Diagnostic Session Control

",

(hard Reset) (default session)

N, J . .

| |

STP4

4 The client transmits either an ECUReset (11 hex) service request message onto the CAN network with reseffype
equal to hardReset or DiagnosticSessionControl {10 hex) with sessionType equa! to defaultSession. This can either be
done functionally addressed or physically addressed (depends on the supported vehicle approach). Further it is vehicle-
manufacturer-specific whether a response message is required or not.

When a baud rate switch has been performed, then this step shall be performed functionally, not requiring a response
message, because the servers perform a baud rate transition to their normal speed of operation.

The reception of the ECUReset (11 hex) request message causes the server(s) to perform a reset and to start the
defaultSession.

Figure 23 — Post-programming step of phase #1 (STP3)

10.2.2 Programming phase #2 — Server configuration

10.2.2.1 Pre-programming step of phase #2 — Server configuration

The pre-programming step of phase #2 is optional and should be used when there is the need to perform
certain action after the software reset of the reprogrammed server. This will be the case when the server does
not provide the required functionality to finally conclude the programming event when running out of boot
during the programming step of phase #1.

Figure 24 graphically depicts the functionality embedded in the pre-programming step of phase #2.

10.2.2.2 Programming step of phase #2 — Final server configuration

The programming step of phase #2 is optional and contains any action that needs to take place with the
reprogrammed server after the reset (when the application software is running) such as writing specific
identification information. This step might be required in case the server does not provide the required
functionality to perform an action when running out of boot during the programming step of phase #1. When
multipte servers require performing additional functions, then multiple programming steps can run in parallel or
will be performed sequentially.

Figure 25 graphically depicts the functionality embedded in the post-programming step of phase #1.

10.2.2.3 Post-programming step of phase #2 — Re-synchronization of CAN network
The post-programming step of phase #2 is used to conclude the programming phase #2.

Figure 26 graphically depicts the functionality embedded in the post-programming step of phase #2.

Cupyﬁgﬂlnﬁrﬁm&gutaﬁmhm © 1SO 2004 ~ All rights reserved
Reproducad by THS under Scense with 130
No reproduction o networking permitted without Boanse from (HS Mot for Resale

T —— —

ISO 15765-3:2004(E)

Vehicle-manufacturer
specific steps

Standardized steps

STP4

eyl S . S S oS S—

5

f 3

Pre-Initialization of the @
CAN link
I N, I _J

—

}

i Yy
@ Diagnostic Session Control

(extended Diagnostic
Session)

i

F '

Post-Initialization of the
f CAN link

e

a4 Prior to any communication on the CAN link the network shall be initialized, which means that an initial wake-up of the
CAN network shall be performed. The wake-up method and strategy is vehicle-manufacturer-specific and optionally to be
used.

Furthermore, this step allows for a determination of the server communication parameters such as the network
configuration parameter serverDiagnosticAddress and the CAN identifiers used by the server(s).

b |n order to be able to perform cerfain services in the programming step of phase #2, a non-defaultSession shall be
started in each server on the CAN link that is invalved in the conclusion of the programming event. This is performed via a
DiagnosticSessionControl {10 hex) service with sessionType equal to extendedDiagnosticSession.

C Following the transition into the extendedDiagnosticSession, further vehicle-manufacturer-specific CAN link
initialization steps can optionally be performed.

EXAMPLE A vehicle-manufacturer-specific additional initialization step can be to issue a request that causes gateway devices to

perform a wake-up on all CAN links which are not accessible by the client directly through the diagnostic connector. The gateway will
keep the CAN link(s) awake as long as the non-defaultSession is kept active in the gateway.

Figure 24 — Pre-programming step of phase #2 (S4)

Copwiint Inermationsl Ongeniaasen for Susemarscssys NS Feserved 67
Reproduced by IHS under Eenae with 150
Ho eproduction or networking permitiod without Bcensa from HS Naot for Resale

ISO 15765-3:2004(E)

Optional/ Recommended Vehicle-manufacturer

STPS

!

Clear Diagnostic |
Information |

@ Further action with ECU

A

2 In case the re-programmed server(s) has (have) been reset during the programming step of programming phase #1,
then any diagnostic information that might have been stored in the re-programmed server(s) when the server was already
running in the default session while other servers on the link still had normal communication disabled shall be reset via a
physically addressed ClearDiagnosticinformation {14 hex) service.

b The client performs any operation that is required in order to conclude the programming event with the server, such as
writing configuration data (e.g. VIN).

Figure 25 — Programming step of phase #2 (STP5)

Standardized steps

&)

S Ty

@ Diagnostic Session Controf
(default Session)
h, A

4 The client transmits a DiagnosticSessionContro! (10 hex) request onto the CAN network with sessionType equal {0
defauitSession. The reception of the DiagnosticSessionControl (10 hex) causes all servers to start the defaultSession. The
request can either be transmitted functionally addressed or physically addressed. The request shall be transmitted to all
servers which were involved in the conclusion of the programming event and therefore stay in a non-defaultSession.

Figure 26 — Post-programming step of phase #2 (STP6)

Gopyﬂg'ﬂlnﬁrrnmﬂmﬂ Ovyanization for Standardization © 150 2004 ~ All rights reserved

Raproduced by IHS under Ecenss with 150
Ne reproduction of nestworking permiitad without icenss from [HS Not kxr Resale

ISO 15765-3:2004(E)

10.3 Server reprogramming requirements

10.3.1 Programmable servers and their categories

The non-volatile server memory programming process can be applied 1o a programmable server in order to

a) reprogram a server that has previously been fully programmed,

b} program a server which has been shipped fo the vehicle assembly plant or service facility without some
element of its full combination of application software and application data,

¢c) reprogram a server which has detected an error with memory locations containing software or calibration,
and which has forced the server to run out of boot software.

Programmable servers fall into three categories.

PRG _TYPE_A servers are programmable servers that have already been fully programmed (either by the
ECU (electronic control unity supplier, the vehicle assembly plant, or in the service environment).
PRG_TYPE_A servers are fully functional and can receive diagnostic requests and respond to them using the
appropriate diagnostic CANIds. These diagnostic CANIds shall be further referenced as permanent diagnostic
CANlds.

PRC_TYPE_B and PRG_TYPE_C servers are programmable servers that are missing some element of their
full combination of application software and application data, or are executing boot software due to a memory
error. A server missing application data {or missing application software and application data) could have
permanent diagnostic CANids pre-programmed. A programmable server which is not fully programmed and is
used on a single platform would most likely have its permanent diagnostic CANids pre-programmed. A
programmable server which is not fully programmed and can be used in multiple platforms might not have the
permanent diagnostic CANIds pre-programmed, unless all of the platforms can standardize the CANIds used
by that server (or multiple parts are released to accommeodate the differences in CANids between platforms).
A PRG_TYPE_B server meets these criteria and has its permanent diagnostic CANIds pre-programmed. A
PRG_TYPE_C server meets these criteria and does not have its permanent diagnostic CANids pre-
programmed. PRG_TYPE_B and PRG_TYPE_C servers shall not attempt to participate in any non-dtagnostic
communication message exchange {inter-server communication).

NOTE A server executing boot software due to a memory fault is considered to be PRG_TYPE_B if permanent
diagnostic CANIds are comprehended in the boot software. If the permanent diagnostic CANIds are not comprehended in
boot software, then the server is considered PRG_TYPE_C.

If permanent diagnostic CANIds are pre-programmed, a programmable server shall respond to alt diagnostic
requests which contain one of the permanent diagnostic CANIds supported by the server (PRG_TYPE_A and
PRG_TYPE_B). If permanent diagnostic CANIds are not pre-programmed (PRG_TYPE_C), the server shall
not respond to diagnostic request messages until diagnostic responses are enabled. The support of
PRG_TYPE_C servers and the process of enabling diagnostic responses are vehicle-manufacturer-specific.

The following is an example of how diagnostic responses can be enabled in PRG_TYPE_C servers.

A PRG_TYPE_C server shall not send positive or negative response messages for any diagnostic service
until the client enables them. While diagnostic responses are disabled, the server shall only process (but not
respond to) diagnostic requests sent using the functional request CANId addressed to all nodes on the CAN
network. Diagnostic responses shall become enabled once the server receives a DiagnosticSessionControl
(10 hex) service, followed by a CommunicationControl (28 hex) service request and a ReadDataByldentifier
(22 hex) service request with dataldentifier equal to serverDiagnosticAddress. The PRG_TYPE_C server shall
only respond to the ReadDataByldentifier (22 hex) service request during this sequence, and shall respond to
all subsequent diagnostic requests until @ S3g.q,, timeout occurs or an ECUReset (11 hex) request is
received.

Copyrht intemational Organizafion for Sianciarceation IS Feserved 69
Reproducad by IHS under icante with 150
No reproduction or networking parmiltied without Ecanse from IHS Mot for Ragale

ISO 15765-3:2004(E)

Once a PRG_TYPE_C server has enabled diagnostic responses, it shall enable two special case diagnostic
CANids for programming purposes. The special-case CANIds are defined as follows.

a) PRG_PrimeReqg CANId = Oxx hex, where “xx” represents the server's diagnostic address value. This
CANId shall be used as the physical request CANId.

b) PRG_PrimeRsp CANId = 3xx hex, where "xx" represents the server's diagnostic address value. This
CANId shall be used as the response CANId.

During the sequence to enable diagnostic responses, the PRG_TYPE _C server shall respond to the
ReadDataByldentifier (22 hex) service request using the PRG_PrimeRsp (3xx hex} CANId.

Diagnostic CANIds and non-diagnostic message CANIds for a fully programmed server are part of the
application data downloaded to the server during a programming event. Upon completion of a software reset,
the now completely programmed server(s) shall recognize its (their) specific CANId assignments for non-
diagnostic and diagnostic messaging.

10.3.2 Requirements for all servers to support programming

During a programming session, servers shall default their physical /O pins (wherever possible and without
risk of damage to the server/vehicle and without risk of safety hazards) to-a predefined state which minimizes
current draw,

Servers shall ensure that they can handle 100 % bus utilization at any allowed programming baud rate without
dropping CAN frames during the programming event. A server may need to modify its hardware acceptance
filtering in order to meet this requirement (see also 10.2.1.1). The server(s) actually being programmed can
recognize the need to modify its acceptance filtering by receiving the DiagnosticSessionControl (10 hex)
service with sessionType equal to programmingSession. The server(s) which are not actually programmed
(programmable or non-programmable servers) might need to be instructed to modify their acceptance filtering
for the duration of the programming event. The method on how those servers are instructed is vehicle-
manufacturer-specific.

The DiagnosticSessionContro! (10 hex) service, with sessionType equal to extendedDiagnosticSession
followed by a CommunicationControl (28 hex) service that disables non-diagnostic messages and a
ControlDTCSetting (85 hex) service that disables setting of DTCs, shall-be used by the server to recognize the
disabling of normal communication and to ensure that a server does not set DTCs while another server is
being programmed. The extendedDiagnosticSession shall be kept active by the client for the duration of the
programming event.

10.3.3 Requirements for programmable servers to support programming

10.3.3.1 Hardware requirements

All servers that are programmable shall be able to interface with the programming tools used by development,
the assembly plant and by service via the appropriate pins of the vehicle diagnostic connector. The only power
required at the vehicle diagnostic connector for programming shall be vehicle battery power.

Any server that is properly installed in the vehicle and is programmable shafl be able to be programmed via

the vehicle diagnostic connector. Removal of the server from the vehicle in order to perform programming
shall not be required.

10.3.3.2 Software requirements

10.3.3.2.1 Application software

If the application software is programmable, then the application software shall be capable of being
programmed separately from the application data. This allows for assembly plant programming of only

cupmlmmm Organization for Standardization © 150 2004 — All rights reserved
Reproduced by IHS under Soansa with 150
Nt reproduction or networking permritted without Bcensa from |HS Mot for Resale

ISO 15765-3:2004(E)

calibrations. Deviations from this requirement shall be agreed upon by all responsible at the OEM and shall be
documented accordingly.

A server shall be capable of using the same diagnostic CANIds for the duration of a programming event. This
means that a server which stores the permanent diagnostic CANIds in calibration and is fully programmed at
the beginning of a programming event (SPS_TYPE_A server) shall use the permanent diagnostic CANIds
even after the application data have been erased. The application software is not required to retain the

permanent diagnostic CANIds if the programming event is interrupted prior to its completion and the server
has performed a software reset.

A server that is only capable of application data programming {e.g. the application software is part of ROM

and application date stored in EEPROM) shall have in the application software the equivalent functionality
specified for the boot software in the subsequent subclauses.

10.3.3.2.2 Application data

Application data (calibration data) shall be capable of being programmed separately from the application
software. This allows for assembly plant programming of application data only. Deviations from this
requirement shall be agreed upon by the responsible at the OEM and shall be documented accordingly.

The server shall support either one or both of the following methods of programming calibrations:
a) programming an individual application data module;

b) programming multiple (or aft) of the application data modules during a single programming event.

10.3.3.3 Boot software description and requirements

All programmable servers that support programming of the application software shall contain boot software in
a boot memory region. Servers that support boot software shall continue to execute out of the boot until a
complete set of application software and application date is programmed.

+The boot memory shall be protected against inadvertent erasure such that a failed attempt to maodify
» application data or application software does not prohibit the server's ability to recover and be programmed

after the failed attempt. The server shzll be able to recover and be reprogrammed if any of the following error
= conditions occur during the programming process:

a)} loss of supplied power connection.

b} loss of the ground connection.
c) disruption of CAN communication.
d) over- or under-voltage conditions.

Boot software resides in the boot memory region and is the software that a server begins executing upon
power-up. Transfer of program control to the boot software also occurs once the server is informed that it is
about to be programmed (reference the DiagnosticSessionControl service and the programming process
defined in 10.2.1.2). No programmable server operating out of boot memory shall transmit a non-diagnostic
communication message or unsolicited diagnostic message.

10.3.3.3.1 Boot software general requirements

All servers operating out of boot memory shall be able to receive diagnostic messages. A server shall be
capable of using the same diagnostic CANIds for the duration of a programming event. This means that a
server which is fully programmed at the beginning of a programming event (PRG_TYPE_A server) shall use
its permanent diagnostic CANIds during the programming. To accomplish this, the permanent diagnostic
CANIds shall be provided to the boot software from the application software when program control is

LN el W Ta T W Al -

Copmight Intemationat Organization ks Standandaxtion JNLS reserved 71
Reproduced by #4S under Bcanse with SO
W0 reproduction or natworking permitied without Bcense from IHS Not for Recais

ISO 15765-3:2004(E)

transferred back to the boot software. The boot software is not required to retain the permanent diagnostic
CANIds passed from the application software if the programming event is interrupted prior to its completion
and the server has performed a software reset and becomes a PRG_TPE_C server (this is valid if the boot
software only supports the non-permanent CANIds).

The boot software shall be protected. The boot software can be protected via hardware (e.g. via settings in a
control register which prevents certain sectors of the memory from being erased or written to) or software (e.g.
address range restrictions in the programming routines). It is recommended that the boot software not be
capable of being modified by the same programming erasefwrite routines that are used to modify the
application software and application date. Programming the boot software as part of the programming process
may be allowed, provided that a mechanism is in place to ensure that there is no possibility that the server
could fail at a point of the programming process where it cannot recover and be programmed with a
subsequent programming event.

10.3.3.3.2 Boot software diagnostic service requirements

During the post-programming step of phase #1 the server either runs out of application software or out of boot,
while during the programming step of phase #1 the server runs completely out of boot, because it has
transitioned to boot when the programming session is enabled via the DiagnosticSessionControl (10 hex)
service.

During programming phase #2 the application software is running.

Tables 49 to 51 define the minimum diagnostic service requirements for the boot software of a programmable
server. The listed services have to be supported in order to fulfil the requirements for performing non-volatite
server memory programming during programming phase #1. The tables make use of the steps defined for
programming phase #1 (see 10.2.1). The service(s) to be supported for steps (a), (c) and (f) shall be defined
by the vehicle manufacturer.

Table 49 — Boot software diagnostic service support during pre-programming step of phase #1

Service Subfunction/Data parameter Sequence Remark
step No.
DiagnosticSessionControf sessionType = {b) Mandatory:
{10 hex) extendedDiagnosticSession Required for session management (53¢, - timeout,
(03 hex) especially when performing a baudrate transition and
SecurityAccess service).
CommunicationControl controlType = {d) Mandatory:
(28 hex) vehicle-manufacturer-specific The server does not need to perform any special
{disable non-diagnostic action {non-diagnostic messages are disabled when
communication messages) running out of boot), except the transmission of a
positive response message.
ControlDTCSetting DTCSetlingType = {e) Mandatory:
(85 hex) off (02 hex) The server does not need to perform any special

action (DTCs are disabled when running out of boot),
except the fransmission of a positive response

message.
ReadDataByldentifier dataldentifier = (N Optional:
(22 hex) vehicle-manufacturer-specific Required to be supported when reading
software/data identification data.
LinkControl linkControlType = {Q) Optional:
(87 hex) verifyWithFixedBaudrate Required to be supporied when performing a
{01 hex), baudrate switch.
verifyWithSpecifcBaudrate
{02 hex),
transitionBaudrate
(03 hex)
Cormmiaht s} ore Oegaeizaton or Standeeczaton T © 1SO 2004 — All rights reserved

Reproduced by IHS under Bcense with 130
No mproduction or natworking permitted without kcenee from IHS Mot for Resale

e ————

ISO 15765-3:2004(E)

Table 50 — Boot software diagnostic service support during programming step of phase #1

Service Subfunction/Data parameter Sequence Remark
siep No.
DiagnosticSessionControl sessionType = (a) Mandatory:
{10 hex) prograrmmingSession Required for compatibility with application software in
(02 hex) order to allow for the identical handling in the
programming application of the client.
SecurityAccess securityAccessType = {b) Optional:
(27 hex} readSeed (01 hex), Required to be supported by thefl-, emission- and
sendkey {03 hex) safety-related systems.
WriteDataByldentifier bootSoftwareFingerprint, {c), {m) Optional:
(2E hex) appSoftwareFingerprint, Required for writing the fingerprint and other
appDataFingerprint, identification data.
vehicle-manufacturer-specific
RequestDownload vehicle-manufacturer-specific (d), {g), i | Mandatory: :
{34 hex) In general required for the transfer of data from the
) . client to the server when running out of boot. :
TransferData routine data, application
(36 hex) software, or application data
RequestTransferExit vehicle-manufacturer-specific
(37 hex)
RoutineControl routineControlType = (e), (B, (h), | Mandatory:
(31 hex) startRoutine (01 hex) (), (k) Required for the check of the programming

dependencies. Can 3also be used when an optional

routineldentifier = check of a successful transfer of data is performed (on a

checkProgDependencies senvice 34, 36, 37 hex sequence basis).
ECUReset resetType = 1) Mandatory:
(11 hex) hardReset (01 hex) Required for a physical reset of the re-programmed

server at the end of the programming step. The
server(s) that have heen reprogrammed are forced to
perform a software reset in order to start the application
software.

The service(s) to be supported for step (m) shall be defined by the vehicle manufacturer,

Table 51 — Boot software diagnostic service support during post-programming step of phase #1

Subfunction / Sequence
Data parameter step

ECUReset hardReset Mandatory:

{11 hex) The server(s) that have been reprogrammed are forced to
perform a software reset in order {o start the application
software.

10.3.3.4 Security requirements

All programmable servers that have emission-, safety- or thefi-related features shail employ a seed and key
secunty feature, accessible via the SecurityAccess (27 hex) service, to protect the programmed server from
inadvertent erasure and unauthorized programming. All such field service replacement servers shall be
shipped to the field with the security feature activated (i.e. a programming tool cannot gain access to the
server without first gaining access through the SecurityAccess service).

It is recommended, but not required, that all development servers use the “1s” complement of the seed as the
valid key.

Copynoht intemational Orgnston ks Sirardioine ghts reserved 73
Reproducad by IHS under §cenae with 150
Na repwoducton of networking permitted without Bconaa rom IKS Not for Resale

[— _— e —_—— —

ISO 15765-3:2004(E)

10.3.3.5 Application software and application data file formats and requirements
The boot software, application software and application data files can have the following formats.
a) Binary — Raw binary file

This means that the client issues a RequestDownload (34 hex) service prior to the download, transmits
the whole data of the binary file with one or multiple TransferData (36 hex) services, and concludes the
transfer via the RequestTransferExit (37 hex) service.

b) Intel Hex%— ASCII file according to Intel Hex format

This means that the client transfers each contiguous block of data contained in the Intel Hex file by
issuing a RequestDownload (34 hex) service prior to the download of the contiguous block, transmits the
whole data of the contiguous block with one or multiple TransferData (36 hex) services, and concludes
the transfer via the RequestTransferExit (37 hex) service. The client repeats the transfer sequence until
all contiguous blocks of the Intel Hex file are transferred.

c} Motorola $19% — ASCI file according to Motorola S19 format

This means that the client transfers each contiguous block of data contained in the Motorola $19 file by
issuing a RequestDownload (34 hex) service prior to the download of the contiguous block, transmits the
whole data of the contiguous block with one or multiple TransferData (36 hex) services, and concludes
the transfer via the RequestTransferExit (37 hex) service. The client repeats the transfer sequence until
all contiguous blocks of the Motorola S19 file are transferred.

Transferring blocks of data during the programming step where the non-volatile memory is not affected by the
transmitted data shall be avoided. This either requires the use of the Intel Hex or Motorala 819 file format or a
split into multiple modules when binary file format is used.

10.3.4 Software, data identification and fingerprints

10.3.4.1 Software and data identification

The boot software, application software and application data shall be identified via the dataldentifiers
according to Table 52 (see also |ISO 14229-1).

The dataldentifiers defined in Table 52 result in the structure of the data portion of each dataldentifier
according to Table 53. The structure of the identificationParameterRecord for bootSoftwareldentification,
applicationSoftwareldentification and applicationDataldentificatioin is vehicle-manufacturer-specific and shall
be the same for all identification information.

Where no application data or application software is programmed in the server, then numberOfModules equal
to zero (0) shall be reported and no identificationParameterRecord shall be present.

Where a server supports multiple identicationParameterRecords for either application software, application
data or boot software, then its network fayer shall be capable of transmitting the multi-frame response
message. This does not necessarily require that the network layer has to reserve the maximum buffer for the
ransmission of this mulli-frame message. The fransmission of a long multi-frame message can also be

5} Intelf Hex is the trade name of a product supplied by Intel. This information is given for the convenience of users of
this part of ISO 15765 and does not constitute an endorsement by 1SO of the product named. Equivalent products may be
used if they can be shown to lead to the same results.

6) Motorofa $19 is the trade name of a product supplied by Motorola. This information is given for the convenience of
users of this part of ISO 15765 and does not constitute an endorsement by ISO of the product named. Equivalent products
may be used if they can be shown to lead to the same results.

Coomight Inepationsl Orgarization for Standarcizatior © IS0 2004 — All rights reserved
Reaproduced by 1HS undar icante with 150
NO reproduchion or networking permitted withowt icense from [H2 Mot for Rocals

SO 15765-3:2004(E)

handled via a ring buffer implementation. The application dynamically feeds the network layer with data while
the transmission of the multi-frame message is in progress. This kind of implementation allows the
transmission of long multi-frame messages by keeping the required RAM buffer small.

The bootSoftwareldentification, applicationSoftwareldentification and applicationDataldentification shall be
part of each module that is downloaded into the server; therefore any write operation to the defined
dataldentifiers shall be rejected by the server.

Table 54 gives is an example of how the identificationParameterRecord could be structured. The example
assumes that the server reports two (2) identificationParameterRecords.

NOTE This example is not a recommendation for an implementation!

Table 52 — Software and data identification

“ Description Mnemonic

F180 bootSoftwareldentification BSI

This value shall be used to reference the wvehicle-manufacturer-specific ECU boot software
identification record. The first data byte of the record data shall be the numberOfModules that are
reported. Following the numberOfModules the boot software identification(s) are reported. The format
of the boot software identification structure shall he ECU-specific and defined by the vehicle
manufacturer.

F181 applicationSoftwareldentification AS]

This value shall be used to reference the vehicle-manufacturer-specific ECU application software
number(s). The first data byte of the record data shall be the numberQOfModules that are reported.
Following the numberOfMaduies the application software identification(s) are reported. The format of
the application software identification structure shall be ECU-specific and defined by the vehicle
manufacturer.

F182 applicationDataldentificatioin AD!

This value shall be used to reference the vehicle-manufacturer-specific ECU application data
identification record. The first data byte of the record data shall be the numberOfModules that are
reported. Following the numberOfModules the application data identification(s) are reported. The
format of the application data identification structure shall be ECU-specific and defined by the vehicle
manufacturer.

Table 53 — bhootSoftwareldentification, applicationSoftwareldentification and
applicationDataldentification data record definitions

Byte pos. Description Cvt Hex Value Mnemonic
in record

numberQfModules NOM

identificationParametetRecord(l #1 = { IDPREC_
data#1 DATA_1

.:.!ata#rn] : DAfA_m

identificationParameterRecord[] #k = [IDPREC_
data#1 DATA_1

data#m) ' DATA m

C,: This parameter is present when at Jeast one identificationParameterRecord is available to be reported [numberOfModules greater

or equal than one (1)].

C,. This parameter is present when more than one identificationParameterRecord is available to be reported [numberOfModules
greater than one (1}

by "nna) |

Copy ight Intemational Organization for Standanieaston thfi reserved 75
Repruduced by 1HS under icensa with 15O
No raprocudiion or networking permitad without Boensa fom IHS Mot for Resals

1SO 15765-3:2004(E)

Table 54 — Example for an identificationParameterRecord structure

Description Hex Value Mnemonic
#1 numberOfModules 02 NOM
identificationParameterRecordf] #1 = | IDPREC _
#2 moduleld 01 DATA 1
#3 version (high byte) 02 DATA 2
#4 version {(low byte) 17 DATA_3
#5 partNumber {(byte #1) 64 DATA 4
#6 partNumber {byte #2) 37 DATA 5
27 partNumber (byte #3) 45 DATA 6
#3 partNumber {byte #4}] 82 DATA 7
identificationParameterRecord[] #2 = [IDPREC
#9 moduleld 02 DATA_1
#10 version {high byte) 35 DATA_2
#11 version (fow byte) 00 DATA 3
#12 partNumber (byte #1) 64 DATA_4
#13 pariNumber (byte #2) 37 DATA 5
#14 partNumber (byte #3) 63 DATA_6
#15 partNumber (byte #4)] 84 DATA_7

10.3.4.2 Software and data fingerprints

A fingerprint uniquely identifies the programming tool that erased and/or reprogrammed the server
software/data. If the server software/data is separated in several modules, the fingerprint could also identify
which software/data module ts manipulated (e.g. boot software, application software, and application data). A
fingerprint shall be written into non-volatile memory of the server before any software/data manipulation
occurs (e.g. before erasing the flash memory).

The boot software, application software and application data fingerprints shall be identified via the
dataldentifiers according to Table 55 (see also [SO 14229-1).

The dataldentifiers defined in Table 55 resuilt in the structure of the data portion of each dataldentifier
according to Table 56.

Table 55 — Software and data fingerprint identification

bootSoftwareFingerprint

This value shall be used to reference the vehicle-manufacturer-specific ECU boot software
fingerprint identification record. Record data content and format shall be ECU-specific and defined
by the vehicle manufacturer.

applicationSoftwareFingerprint

This value shall be used to reference the vehicle-manufacturer-specific ECU application software
fingerprint identification record. Record data content and format shall be ECU-specific and defined
by the vehicle manufacturer.

applicationDataFingerprint

This value shall be used to reference the vehicle-manufacturer-specific ECU application data
fingerprint identification record. Record data content and format shall be ECU-specific and defined
by the vehicle manufacturer.

Gu;ryﬁﬂﬂlr?ﬂfam Organization for Standardization © 150 2004 - All rights reserved
Reproducad by IHS under kcense with 1S0
No mproduction or nedworking permiited without Rcenss from [HS Mot for Resale

ISO 15765-3:2004(E)

Table 56 — bootSoftwareFingerprint, applicationSoftwarefFingerprint and applicationFingerprint data
record definitions

Byte pos. Description Cvt Hex Value Mnemonic
in record

fingerprintParameterRecord[} ={ FPPREC _
data#1 0 ATA_"

data#m | ' ' DATA m

The structure of the fingerprintParameterRecord for bootSoftwareFingerprint, applicationSoftwareFingerprint,
and applicationDataFingerprint is vehicle-manufacturer-specific and shall be the same for all fingerprint
information.

Table 57 gives an example on how the fingerprintParameterRecord could be structured. The given fingerprint
belongs to the module with module Id 02 hex.

NOTE This example is not a recommendation for an implementation!

Table 57 — Example for a fingerprintParameterRecord structure

Description Hex Value Mnemonic

fingerprintParameterRecord[] #1 = | IDPREC _
moduleld DATA_1

TesterSerialNumber (byte #1) DATA_2
TesterSerialNumber (byte #2) DATA_3
TesterSerialNumber (byte #3) DATA_4
TesterSerialNumber (byte #4) DATE_S

programmingDate (byte #1) DATA_4
programmingDate (byle #2) DATA 5
programmingDate (byte #3)] DATA_G

10.3.5 Server routine access

Routines are used to perform non-volatile memaory access such as erasing non-volatiie memory and checklng
the successful download of a module.

Table 58 defines the routineldentifiers for non-volatile memory access (see also 1S5S0 14229-1).

Table 58 — routineldentifiers for non-volatile memory access

eraseMemory

This value shall be used to start the servers mermory erase routine. The Controf option and status

record format shall be ECU-specific and defined by the vehicle manufacturer.

checkProgrammingDependencies

This value shall be used to check the server's memory programming dependencies. The Control
option and status record format shall be ECU-specific and defined by the vehiclte manufacturer.

The checkProgrammingDependencies routineldentifier can, for example, be used to either transfer an already
calculated checksum to the server for a server-internal check or to request the calculation of the checksum in
the server and t{o provide the calculated values in the response message for a client internal check.
Furthermore, the checkProgrammingDependencies routineldentifier can, for example, be used to trigger a

Copyripht Intemational Organization for Standardization G115 feserved 77
Reproducad by 1HS under Bcanss with 150
Mo mproduction of hetworking permitted without Bcenss fom IHS Mot for Rétals

—_— e ™ ——

1ISO 15765-3:2004(E)

programming check routine in the server, which only indicates success or not and optionally could provide
results such as the error reason by using the appropriate negative response code or appropriate results
values in the positive response message.

The following alternatives exist for the activation of the routine in the server.

a) The client transmits a RoutineControl (31 hex) service request message to the server. The server accepts
the request and indicates this via a positive response message. The requested routine is started in the
background, therefore the results are not yet provided in the positive response message. The client shall
request the routine resuits via the RoutineControl (31 hex) service (polling of routine results).

b} The client transmits a RoutineControl (31 hex) service request message to the server. The server accepts
the request and starts the routine. The server does not send a positive response untit the routine is
stopped. In order to keep the communication with the client active, the server may need to transmit
negative response messages including response code 78 hex (requestCorrectlyReceived-
ResponsePending). When the routine is completely executed, then the server transmits the
RoutineConfrol positive response message that includes the results of the performed check of the
programming dependencies.

10.4 Non-volatile server memory programming message flow examples

10.4.1 General information

The following presents the message for a non-volatile server memory-programming event of a single server.
The given message flows are based on a single server and the {ransfer of four (4) modules, where each
module has a length of 511 bytes (data bytes 02 hex through FE hex). The network layer buffer size of the
server that is re-programmed is 255 bytes (reported in the RequestDownload positive response message).
The programming example uses the 11 bit OBD CAN Identifiers as specified in ISO 15765-4. Therefore, all
frames must be padded with filler bytes (DLC = 8). All CAN frames of a request message are padded with a
filler byte of 55 hex. All CAN frames of a response message are padded with a filler byte of AA hex.

NOTE Filler bytes can have any value.

10.4.2 Programming phase #1 — Pre-Programming step

See Tables 59 to 61.

Tahble 59 — StartDiagnosticSessionControl{extendedSession)

Relative : Client PCI and frame data bytes Comments
Time Request/Server
Response

27.2174 Func. Reguest 02 10 03 55 55 55 55 55 DSC message-SF

0.0001 | Response 06 50 03 00 386 17 70 AA | DSC message-SF

0.0002 Response 06 50 03 CO 86 17 70 AA DSC message-SF

Table 60 — ControlDTCSetting(off)

Relative . Chient PCI and frame data bytes Comments
Time Request/Server
Response

Furic. Regquest 02 85 02 55 55 55 55 55 CDTCS message~SF

Response 02 C5 0Z AR AA AA AA AA CDTCS message-SF

Response 02 C5 02 AA AR AA AR RA CDTCS message-SF

70 . © 1S0 2004 - All rights reserved

Reproduced by IHS under Roense with 15O
No reproduction o networking permittad without icanse from IHS Mot for Resaks

I ——————— T —————

ISO 15765-3:2004(E)

Table 61 — CommunicationControl{disableRxAndTx in the application)

Relative | Ch. | CANID Client DLC PC1! and frame data bytes Comments
Time # Request/Server
Response
1.0007 1 1DF Func. Reqguest B] 03 28 03 01 35 55 55 55 CC message-SF
U.ODU;_ 1 TES8 Response 8 02 68 03 AR AA AA AR AA CC message-SF
0.0001 1 7E9 Response g8 02 68 03 AA AA RA AA AA CC message-SFE
NOTE After the successful execution of the CommunicationControl with the subfunction disableRxAndTx in the application, a

functional addressed TesterPresent message with suppressPosRspMsgindicationBit (bit 7 of subfunction) = TRUE (1) (no response) is
sent approx. every 2 s to keep all servers in this state in order to not send normal communication messages.

10.4.3 Programming phase #1 — Programming step

See Tables 62 to 87

Relative
Time

Table 62 — DiagnosticSessionControl{programmingSession)

Client
Request/Server
Response

Phys. Redquest

PCI and frame data bytes

02 10 02 55 55 55 55 55

Comments

DSC message—SF

Response

06 50 02 00 FA OB BS AA

DSC message-SE

Relative
Time

1.0000

Func. Request

02 3E 80 55 55 55 585 55

Table 63 — SecurityAccess(readSeed)

Client
Request/Server
Response

Phys. Request

PCIl and frame data bytes

02 27 01 55 55 55 55 535

TP message-SF

Comments

SA message—SF

Response

C2 67 01 21 74 AA AA AA

SA message-SF

0.998%9

Func. Request

02 3E 80 55 55 55 55 55

Table 64 — SecurityAccess(sendKey)

TP message-SE

Relative | Ch. | CANID Client DLC PCIl and frame data bytes Comments
Time # Request/Server
Response

1.9998

Phys. Request

04 27 02 47 11 55 55 55

sS4 messqge-SF

0.0002

71DF

Func. Request

02 3E 80 55 &5 55 55 55

TP message—-SF

0.0008

7E8

Response

02 &7 02 AA AA AA AA AR

SA message-SF

1.99%62

F - P alaalalsy |

=

All —.-‘ghts rESEWEd

Raproiuced by IHS under Ecanse with S0

No raproduction or networking permitted without Rcense from IHS

|

Func. Request

D |DCO |0

02 3E 80 55 55 55 55 55

TP message-—-SF

79

IS0 15765-3:2004(E)

Relative
Time

0.3995

CANID

Table 65 — RoutineControl{eraseMemory)

Client
Request/Server
Response

Phys. Request

DLC

PCl and frame data bytes

Comments

message—-SF

0.0001

Response

w/ NRC78-8F

1.0004

Func. Request

message-SF

1.8995

Regponse

w/ NRC78-SF

0.0005

Func. Reguest

message—-SFE

2.0001

Func. Request

message~SF

1.0002

Response

message-SF

0.399%98

Relative
Time

1.9989

el Gl G e IR R

Func. Request

D000 |co|d

Table 66 — RequestDownload — Module #1

Client
Request/Server
Response

Phys. Reguest

PCIl and frame data bytes

00 19 68 55 55

message-SE

Comments

RD message-FF

0.0001

Response

AR AR AA AA AA

FlowControl

0.0010

Func. Request

52 35 55 35 55

TP message~3F

0.0001

Phys. Request

FF 55 535 55 55

RD message-CF

0.0012

Response

00 FF AA AA AA

RD message-~SF

1.9987

Relative
Time

0.9996

IFunc. Request

55 55 55 55 55

Table 67 — TransferData — Module #1 {block #1}

Client
Request/Server
Response

Phys. Request

PC1 and frame data bytes

36

Cl 02

03

04 05

TP message—-SF

Comments

TD message-FF)

0.0001

Response

00

AA AR

AA

AR AR

FlowControl

0.0012

Phys. Request

07

08 08

0A

0B 0OC

TD message-CF

0.0010

Phys. Request

)

OF 10

11

12 13

TD message-CF

0.0010

15

16 17

18

19 1A

TD message-CF

Phys. Request

0.0010

Phys. Request

F5

F6 F7

F8

FS FA

TD message-CF

0.0009

Phys. Reguest

FC

FD FE

55

55 55

TD message-CF

0.0011

Response

01

AR AA

AR

AR AR

TD message-SFE

0.9630

L+ J g

LCopyright International Ongantzation for Standardzation
Reproduced Oy IHS under fosnsa with 150

Ho reproduction or networking permilted without kcensa from 1HS

Func. Request

BO

Not for Rescale

53 55

55

TP message~SF

© 1SO 2004 — All rights reserved

g

ISO 15765-3:2004(E)

Table 68 — TransferData — Module #1 {block #2)

Relative . Client PCI and frame data bytes Comments
Time Request/Server
Response

1.99984 Phys. Request 02 03 04 05 TD message (FF)
0.0001 Response AR AR AA AA FlowControel

0.0012 Phys. Request 09 0A OB QC TD message (CF)
0.0010 Phys. Request 10 11 12 13 TD message (CF)
0.0010 | Phys. Request 17 18 19 1A TD message (CF)

0.0010 Phys. Reguest F7 F8 F9 FA TD message (CF)
0.00095 Phys. Reguest FE 55 55 55 TD message (CF)
0.0011 Response AR AA AA AA TD message

1.9633 Func. Request 55 55 TP message

Table 69 — TransferData — Module #1 (block #3)

Relative | Ch. | CANID Client DLC PCI and frame data bytes Comments
Time # Request/Server
Response
0.9991 1 TEO Phys. Reguest 8 07 36 03 02 03 04 05 06 TD message-3F
0.0011 1 TE8 Response g8 02 76 03 AA AA AA AR AR TD message-SF
0.9998 1 TDF Func. Regquest 8 P2 3E 80 55 55 55 55 55 TP message-SF

Table 70 — RequestTransferExit — Module #1

Relafive . Client PCIl and frame data bytes Comments
Time Request/Server
Response

1.98495 Phys. Reguest 37 55 55 55 55 55 55 RTE message-SF
0.0002 Func. Reqguest 3E B0 35 55 55 55 55 TP messagé—SF
0.0009%9 | Response 77 AR AA AA AA AA AA RTE message-SF
1.9992 Func. Request 3E 80 55 55 K5 §5 5§ TP message-SF
Z2.0001 Func. Reguest 3E 80 55 55 53 55 55 TP message—-SF

Table 71 — RequestDownload — Module #2

Relative Client PCl and frame data bytes Comments
Time Request/Server
Response

1,9995 Phys. Request 33 00 1B 67 RD message-FF

0.0001 Response AA AR AA AR FlowControl

0.0004 Func. Request 33 53 35 55 TP message-SF
0.0007 Phys. Request 2> 55 b5 55 RD message-CF
0.0012 Response FF AA AA AR RD message-SF
1.9982 Func. Reguest 55 55 55 55 TP message~SF

] ﬂ_lr':ﬂi;nni Al —'ghts resewed 81
Raproduced by IHS under fcense with [SO
Mo reproduction of networking permitted without Bcense from [HS Mot kr Recals

ISO 15765-3:2004(E)

Table 72 — TransferData — Module #2 (block #1)

Relative | Ch. { CANID Client DLC PCIl and frame data bytes Comments
Time # Request/Server
Response

1.0002 Phys. Request TD message-FF
0.0001 Response FlowControl

0.0012 Phys. Request TD message-CF
0.0010 Phys. Request TD message-CF

Phys. Request TD message—-CFE

Phys. Request TD message-CF
Phys. Request TD message-CF
Response ITD message~-SE
Func. Reguest TP message-SF

Table 73 — TransferData -— Module #2 (block #2)

Relative : Client PCl and frame data bytes
Time Request/Server
Response
1.589%4 1 TEQ Phys. Request 8 }O FF 36 D2 02 03 04 05 TD message-FF
0.0001 1 7E8 Response 8 30 00 00 AA AA AA AA AR FlowControl
0.00172 1 TEOD Phys. Request B 21 06 07 08 09 0A 0B 0OC TD message-CF
0.0010 1 7E0 Phys. Reguest | 8 22 0D OE OF 10 11 12 13 TD message-CF
0.0010 1 TEQO Phys. Reguest 8 23 14 15 16 17 18 19 1A TD message~CF
0.0010 1 7E0 Phys. Request | 8 23 F4 F5 F6 F7 FB8 F9 FA TD message-CF
0.0008% 1 TED Phys. Reguest 8 24 FB FC FD FE 55 55 55 TD message-CF
¢.0011 1 7E8 Response 8 02 76 02 AA AA AA RAA AA TD message-SFE
1.9633 1 |?DF Func., Request B8 02 3E 80 55 55 55 55 55 TP message-5SF
Table 74 — TransferData -— Module #2 (block #3)
Relative | Ch. | CANID Client DLC PCIl and frame data bytes Comments
Time # Request/Server
Response

Phys. Request 07 36 03 02 03 04 05 06 message~FF
Response 02 76 03 AR AA AA AA AA message-SF
Func. Request 02 3E 80 55 55 55 55 55 message-SF
Func. Redquest 02 3E 80 55 55 55 55 b5 message-SF

Table 75 -—— RequestTransferExit — Module #2

Relative Client PCI and frame data bytes
Time Request/Server
Response

q.DDDZ Phys. Request 01 37 55 55 55 55 55 55 RTE message-SF
Q0.0011 Response 0l 77 AA AA AA AA AR AA RTE message-5SF

1.95887 Func. Reguest 02 3E 80 55 55 b5 55 55 TP message-SF

2.0001 Func. Request 02 3 80 55 55 55 55 55 TP message-SFE

an . © 150 2004 — All rights reserved

Reproducad by IHS under Econsa with 1SO
No repwoduction o nsbworking permithed without canae from IHS Not for Resals

- A e e ' . — —— ——— e —— e

Relative
Time

Table 76 — RequestDownload — Module #3

Client
Request/Server
Response

Phys. Reguest

PC! and frame data bytes

00 33 00 1D 66

Comments

RD message-FF

ISO 15765-3:2004(E)

Func. Reguest

55 55 55 b5 55

TP message-SF

Response

AA AA AA AA RAA

FlowControl

Phys. Request

FFF 55 55 55 &5

rRD message—FF

Response

Q0 FF AA AA AA

RD message—SF

Relative
Time

1.0006

Func. Request

5b 55 bbh 55 55

Table 77 — TransferData — Module #3 (block #1)

Client
Request/Server
Response

| Phys. Request

PCIl and frame data bytes

Cl1 02 03 04 05

TP message-5F

Comments

TD message—FF

0.0001

Response

AA AA AA AA AA

FlowControl

0.0012

Phys. Request

08 0% OA OB 0OC

TD message-CF

0.0010

Phys. Regquest

OF 10 11 12 13

TD message—-CF

0.0010

Phys. Request

16 17 18 19 1A

TD message-CF

0.0010

Phys. Reguest

F6 F/ F8 F9 FA

TD message—-CF

0.0009

Phys. Request

FD FE 55 55 55

TD message-CF

0.0011

Respense

AA AA AA AA AA

TD message-SF

1.8619

Func. Request

55 55 55 55 55

TP message-SFE

2.0001

Relative
Time

0.0003

Func. Request

b5 55 55 55 535

Table 78 — TransferData — Module #3 (block #2)

Client
Request/Server
Response

Pll_jfs - Request

PCIl and frame data bytes

36 G2 02 03 04

TP message-SF

TD message—FF

0.0001

Response

00 AA AA AA AR AA

FlowControl

0.0012

Phys. Request

07 08 08 0OA OB OC

TD message~CF

0.0010

Phys. Request

CE OF 10 11 12 13

TD message-CFE

0.0010

Phys. Request

15 16 17 18 19 1A

TD message—-CF

0.0010

Phys. Request -

F5 Fo6 F7 F8 F9 FA

TD message-CF

0.0009

Phys. Request

FC FD FE 53 35 25

TD message

(CF}

0.0011

Response

02 AA AA AA AA AA

TD message

1.9622

£ 1y v oA AN -

Capyright inematonal Organization for Standardization QhTS reserved
Rep roduced by [HS wnder Eoense with 150
Mo reproduction or networigng parmitted without Bcanse from IHS

Func. Request

80 55 55 55 55 55

TP message

83

ISO 15765-3:2004(E)

Table 79 — TransferData — Module #3 {block #3)

Client

Relative | Ch. | CANID DLC PCIl and frame data bytes Comments
Time # Request/Server
Response

1.0002

Phys. Request

07 36 03 02 03 04 05 06

TD message-FF

0.0011

Response

02 76 03 AA AA ARM AA AA

TD message-SF

0.9998

Func. Request

02 3E BO 55 55 55 55 55

TP message-SF

< .0001

Relative
Time

0.0007

Func. Reguest

02 3E 8C 55 55 55 55 55

Table 80 — RequestTransferkExit — Module #3

Client
Request/Server
Response

Phys. Request

PCIl and frame data bytes

2D

55 55 55 55 55

TP message-SF

RTE message-SF

0.0011

Response

AA AA RAA AA AA AA

RTE message-SF

1.9982

Func. Request

80

55 55 55 55 55

TP message-SF

2.0001

Func. Request

B0

55 55 55 50 55

TP message-SF

2.0001

Relative
Time

C.0004

Func. Request

BO

55 55 53 53 53

Table 81 — RequestDownload — Module #4

Client
Request/Server
Response

Phys. Request

PCI and frame data bytes

34

00 33 00 1F 63

TP message—-SF

Comments

RD message-~FF

0.0001

Response

00 AA AA AA AA AR

FlowControl

0.0011

Phys. Request

01

FE 55 55 55 55

RD message~-CF

0.0012

Response

20

00 FF AA AA AA

RD message-SF

1.9972

Func. Reguest

BO

55 55 55 55 55

Table 82 — TransferData — Module #4 (block #1)

TP message-SF

Relative Client PCIl and frame data bytes Comments
Time Request/Server
Response

1.0012 1 7EQ Phys. Request | 8 10 FF 36 01 02 03 04 05 TD message-FF
0.0001 1 71E8 Response 8 30 00 00 AA AA AA AA AA Flmeontiml

0.0012 |1 [780 Phys. Request | 8 21 06 07 08 09 OA OB OC | TD message-CF
0.C010 1 TE0 Phys. Request | 8 22 0D OE OF 10 11 12 13 TD message~CF
0.0010 1 7EO0 Phys. Request | 8 23 14 15 16 17 18 19 1A TD message-CF
0.0010 |1 [7E0 | Phys. Request |8 23 F4 F5 F6 F] F8 F9 FA | TD message-CF
0.0009 1 7EQ Phys. Request | 8 24 FB FC FD FE 55 55 55 TD message-CF
0.0011 1 TESB Response B8 02 76 01 AA AA AA AA AA rTD message-S¥F
1.9614 1 7DF Func. Request 8 02 3E 80 55 55 55 5% &5 TP message-SF
2.0001 1 7DF Func. Regquest 8 02 3E 80 55 55 55 55 55 TP message-SF

wlrnna‘mm&wmﬁmum © 1S0 2004 — All nghts reserved
Reproduced by HS under kcense with 150

No reproduction of networkity) permitted without Bcanse from 1HS Not for Resale

Relative

Time

0.0009

Table 83 — TransferData — Module #4 (block #2)

Client
Request/Server
Response

Phys. Request

PCIl and frame data bytes

36 02 02 03 04 05

ISO 15765-3:2004(E)

Comments

TD message~FF

0.0001

Response

00 AA AA AA DA RA

FlowControl

0.0012

Phys. Request

07 08 09 0A OB OC

TD message-CF

0.0010

=

Phys. Request

OE OF 10 11 12 13

TD message-CF

15 16 17 18 19 1A

TD message-CF

0.0010

Phys. Request

0.0010

Phys. Request

FS F6 F7 F8 F9 FA

TD message-CF

C.0009

Phys. Request

FC FD FE 53 55 23

TD message—~CF

0.0011

Response

02 AA AA AA AR AA

TD message-5F

1.8617

Relative

Time

1.0007

Func. Request

BO 55 55 55 55 55

Tahle 84 — TransferData — Module #4 (block #3)

Client
Request/Server
Response

Phys. Request

PCI and frame data bytes

07 36 03 02 03 04 05 06

TP message-SF

Comments

message-SE

0.0011

Regponse

02 76 03 AA AA AA AA AA

message-SE

0.9982

Func. Reguest

02 3E 80 55 55 55 55 55

message-SE

2.0001

Relative

Time

Func. Reguest

02 3E BO 535 55 5> 55 55

Table 85 — RequestTransferExit — Module #4

Client
Request/Server
Response

PCl and frame data bytes

message-SFE

Comments

0.0013 1 TED Phys. Request 8 01 37 55 55 55 55 55 55 RTE message-S¥E
0.0011 1 TE8 Response 8 01 77 AA AA RA AA AR AA RTE message-SF
1.9976 1 7DF Func. Request 8 02 3E 80 55 55 55 5§ 55§ TP message-SF

Relative

Time

1.0012

Table 86 — RoutineControl{check programming dependencies)

Client
Request/Server
Response

Fhys. Request

PCl and frame data bytes

Comments

message—-SF

0.0001

0.9987

Response

w/ NRC78-SF

Func. Request

message-SF

2.0001

Func. Reguest

message-SF

0.0011

Response

w/ NRC78-8F

1.9990

Func. Reqguest

message—-SF

1.0019

Response

message-SF

0.5882

Func. Reguest

message~3F

2.0001

o Ll G I R e e R

Func. Regquest

IGO0 (|)|

message-SFE

Copyright Intamational Organization for Standanzaton 3T S reserved 85
Heproducad by |HS under Bcanse with 150

No raprodoction or networking peceoitiad without Rcovess from HS Not for Rosaio

ISO 15765-3:2004(E)

Relative
Time

0.0004

Table 87 — WriteDataByldentifier — dataldentifier = VIN

CANID

Client
Request/Server
Response

Phys. Reguest

DLC

PCl and frame data bytes

14 2E F1 90 57 41 4C

Comments

WDBI message-FF

0.0001

Response

00 00 AA AR AA AA AA

s

FlowControl

0.0012

Phys. Request

54 4F 4E 353 2D 57 45

WDBI message-CF

0.0010

Phys. Redquest

42 2E 43 4F 4D 20 20

WDhEBI1 message-CF

0.0011

Response

—

6E F1 90 AA AA AR AA

WDBI message-SF

1.9961

Func. Reguest

JE 80 55 55 55 55 55

TP message-SF

2.0001

Func. Reguest

3E BO 35 55 55 53 35

10.4.4 Programming phase #1 — Post-Programming step

See Table 88.

Relative

Time

Table 88 — ECUReset — hardReset

Client
Request/Server
Response

PCIl and frame data bytes

TP message-SF

0.3846 1 7DF Func. Request | 8 02 11 01 55 55 55 55 55 ER message-SF

0.0011 1 7E8 Response 8 02 51 01 AA AA AA AA AA ER message-SF

0.0001 1 7E9 Response 8 02 51 01 AA AA AA AA AA ER message-SF
on

Copyright Irtemational Omganizetion for Standandization
Reaproduced by IHS under Scensa with 150

N reproduction or networking permitted without Bcenss from IHS

© 1S5S0 2004 - All rights reserved

o

.

ISO 15765-3:2004(E)

Annex A
(normative)

Network configuration dataldentifier definitions

A.1 Network configuration dataldentifier definitions

The network configuration data related dataldentifiers that can be read via the ReadDataByldentifier (22 hex)

service can be used by external test equipment or any other client to read out information about the
communication protocol and CAN network configuration supported by the vehicle communication system. The
client can request information about

— the addressing scheme that shall be used,

— the CAN identifiers that shall be used by the client and the server(s) for the subsequent communication,
and

— the servers that are connected to a remote network.

The network configuration data allows the client to dynamically set-up the communication configuration and
adopt the addressing format and parameters provided by the vehicle system server(s).

The network configuration data will be requested via the ReadDataByldentifier (22 hex) service using either
physical or functional addressing.

Any server can support the dataldentifiers defined below. In most cases, the server is the Diagnostic
Configuration Master. A system may have a Diagnostic Configuration Master, but it is also possible to let
individual servers directly report their own data.

Table A.1 defines the dataldentifier values applicable for network configuration data (see 150 14229-1 for the
reserved range of dataldentifiers for network configuration data).

Gopright Intemational Organizatin for Standarization. GNIS reserved 87
Reproduced by IHS under kcarsa with 150
No reproduction or networking permitied without kcenee from I1HS Nat Tor Resale

ISO 15765-3:2004(E)

Table A.1 — dataldentifier definitions for network configuration data

Hex Description

FO10 addressFormat

This value shall cause the Diagnostic Configuration Master server to report which addressing
scheme shall be used for the subsequent communication.

Cvt
U

Mnemonic

AF

FO11 responseCANId

This value shall cause the Diagnostic Configuration Master server, or any other server, to

report a list of CAN Ids that will be used by vehicle servers for responses during the
subsequent communication.

The list shall contain all response CAN Ids that are associated with the target address
included in the request message to the Diagnostic Configuration Server (or arty other server).

This means that if a functional target address is used for the request, then the response shall
contain a list of all CAN Ids that will be used by servers supporting that functional target
address.

If a physical target address is used for the request, then the response shalf contain the CAN Id
that will be used for responses from the server having that physical target address.

RSPCID

FO12 physicalRequestCANId

This value shall cause the Diagnostic Configuration Master server, or any other
server/servers, to report a list of all CAN fds that shall be used by the client to send physically
addressed request messages during the subsequent communication.

The response is depending on whether the request is sent with a functional or physical target
address.

If a functional target address is used for the request, the response shall either contain a list
with all CAN Ids that shall be used by the client for physically addressed requests to any
server in the vehicle system (in this case shal! only one server respond), or each responding
server shall send a list with one CAN 1d that shall he used for physically addressed requests to
that server.

NOTE For vehicle systems using extended addressing, there is always only one CAN Id in this list.

If a physical target address is used for the request, the response shalt contain the CAN Id that
shall be used for requests to the server having that physical target address.

PRQCID

FO13 functionalRequestCANId

This value shall cause the Diagnostic Configuration Master server, or any other server, to
report the CAN Id that shall be used during the subsequent communication, by the client, for
functionally addressed request messages, corresponding to the functional address included in
the request message.

For vehicle systems using extended addressing, the same CAN Id is always used for all
functionally addressed request messages.

FRQCID

FO14 allFunctionalRequestCANIds

This value shall cause the Diagnostic Configuration Master server, or any other server, fo
report a list of all CAN ids that shall be used by the client, fo send functionally addressed
request messages, during the subsequent communication.

NOTE for vehicle systems using extended addressing, there is always only one CAN |d in this list.

| AFRQCID

FO15 remoteServerAddress

This value shall cause the Remote Diagnostic Configuration Master server, or any other
server, to report a list of remote server identifiers (server target/source addresses) for servers
connected to a remote network.

The response is depending on whether the request is sent with a functional or physical remote
target address.

If a functional remote target address is used for the request, then each remote server shall
send a response message with its own remote server identifier.

If a physical remote target address is used for the request, then the Remote Diagnostic
Configuration Master server, or any other server, shall sent a list including the remote server
identifiers for al! remote servers on the remote network.

RSA

FO16 serverDiagnosticAddress

This value shall cause the server(s) to report its (their) physical diagnostic address{es).
Independent of the addressing method used in the reguest message, the response always

contains the single diagnostic address (target address) of the requested server(s).

SDA

wﬁmwnw © 1S0 2004 — All rights reserved

Reproduced by IHS inder Ecansa with SO
No reproduction or networking pesmiited without lcenss from IHS Mot for Resale

N

ISO 15765-3:2004(F)

A.2 Network configuration dataldentifier data format definitions

Tables A2 to A5 define the data parameter format and the content of the network configuration
dataldentifiers as given in Table A.1.

Tables A6 to A.11 define the data parameter values of the dataldentifier defined in Tables A.2 to A.5.

Table A.2 — addressFormat dataldentifier data format recordDataldentifier = addressFormat

Parameter Name Hex Value Mnemonic

dataRecord[] = [DREC
serverAddressFormat | 00-FF DATA_1

Table A.3 — CAN Id related dataldentifier's data format recordDataldentifier = physicalRequestCANId,
functionaiRequestCANId, allFunctionalRequestCAN!ds

Parameter Name Hex Value Mnemonic

dataRecord]] = DREC _
diagnosticAddress #1 00-FF DATA 1
CANIdBits241028 #1 00-FF DATA 2
CANIdBits16t023 #1 00-FF DATA 3
CANIdBits8t015 #1 00-FF DATA 4
CANIdBitsOto7 #1 00-FF DATA 5

00-FF DATA,_(n-4)
00-FF DATA_(n-3)
00-FF DATA_(n-2)
00-FF DATA_(n-1)
00-FF DATA n

diagnosticAddress #m
CANIdBits24t028 #m
CANIdBits16t023 #m
CANIdBits8to15 #m
CANIdBitsOto7 #m]

QOO0 0Q - - S SS2

C The Diagnostic Configuration Master might report multiple diagnosticAddress and CAN Ids sets, depending on the target address

used in the request message that causes the diagnostic configuration master to respond (see network configuration data dataldentifier
definitions for more details).

Table A.4 — Diagnostic address-related dataldentifier's data format recordDataldentifier
= diagnosticAddress

dataRecord]] = [
diagnosticAddress]

Table A.5 — addressFormat dataldentifier data format
recordDataldentifier = remoteServerAddress

Parameter Name Hex Value Mnemonic

dataRecord[] = [

remoteServerAddress #1

remoteServerAddress #m |

C In case there are multipie remote servers, then this parameter is present. The format of the remoteServerAddress is identical to the
format of the diagnosticAddress parameter.

e Y o BT Y oW A

Copyright Intermational Organizabion for Stancardization 31 1LS reserved 89
Reproduced by HHS under kcense with 150
NO raproduction or networking pormitted without icensa from IHS Mot for Recoie

—_—

ISO 15765-3:2004(E)

Table A.6 — serverAddressFormat data parameter value definition

I S o ey

normalAddressingFormat

The server(s) support(s) a network layer protocol as specified in 1ISO 15765-2 using the
normal addressing scheme.

fixedNomalAddressingFormat

The server(s) support(s) a network layer protocol as specified in 1ISO 15765-2 using the
fixed normat addressing scheme.

extendedAddressingFormat

The server(s) support{s) a network layer protocol as specified in ISO 15765-2 using the
extended addressing scheme.

mixedAddressingFormat

The server(s) supporl(s) a network layer protocol as specified in 1SO 157652 using the
mixed addressing scheme.

Table A.7 — diagnosticAddress/remoteServerAddress data parameter value definition

diagnosticAddress f remoteServerAddress

This is the diagnostic address for the server associated with the CAN identifier being
reported.

It is the physical address of the server, if the dataldentifier equals responseCANId or
physicalRequestCANId.

It is the functional address of the server(s), if the dataldentifier eqguals
functionalRequestCANId or allFunctionalRequestCANId.

It is the physical address of the server(s) addressed if the dataldentifier equals
serverDiagnosticAddress.

Table A.8 — CANIdBits24to28 data parameter value definition

Hex Description Mnemonlc
00 -1F 29 bit CAN Identifiers 28BCID2428
This is the value of bits 24-28 in the 29 bit CAN identifier, positioned with identifier bit 24 as
the least significant bit. The three most significant bits of this parameter shall always be set
to O (zero) for 29 bit CAN identifiers.
FF 11 bit CAN identifiers 11BCID2423

anMn

Copwright Inbemational Crgantzation for Standardization

This value is used to indicate that the parameters CANIdBits8to15S and CANIdBitsOto7
contain an 11 bit CAN identifier.

Table A.9 — CANIdBits16t023 data parameter value definition

11 bit CAN Ildentifiers [29 bit CAN identifiers

For 11-bit CAN identifiers this parameter shall be treated as don't care.

For 28 bit CAN identifiers this is the value of bits 16-23 in the 29 bit CAN identifier,
positioned with identifier bit 16 as the least significant bit.

Reproduced by IHS under fcense with ISO
No reproduction of netwarking permitted without Bcanse from HS Mot for Resala

Mnemonic

CID1623

© 150 2004 — All rights reserved

wi

[4
1

J—

ISO 15765-3:2004(E)

Tahle A.10 — CANIdBits8to15 data parameter value definition

Description

11 bit CAN Identifiers / 29 bit CAN Identifiers CID0O815
For 11 bit CAN identifiers this is the value of bits 8-10 in the 11 bit CAN identifier, positioned

with identifier bit 8 as the least significant bit. The five most significant bits of this parameter
shali be treated as don't care.

For 29 bit CAN identifiers this is the value of bits 8-15 in the 29 bit CAN identifier, positioned
with identifier bit 8 as the least significant bit.

Table A.11 — CANIdBits0to7 data parameter value definition

Description

11 bit CAN Identifiers / 29 bit CAN ldentifiers CiDOQA7

For 11 bit and 29 bit CAN identifiers this is the value of bits 0-7 in the CAN identifier,
positioned with identifier bit 0 as the least significant bit.

91

Copyright Inamational Orgarization for Standanization J11LS Feserved
Reproduced by IHS under iconse with |50 Nk for

No regpoduction or networking permitted without icenss fom [HS

— —

1SO 15765-3:2004(E)

[1]

[2]

3]

[4]

an

Bibliography

ISO/TR 8308, Information processing systems — Open Systems Interconnection — Service
conventions

}3::?{;‘" IEC 7498 (all parts), Information technology — Open Systems Interconnection — Basic Reference
e

ISO/IEC 10731, Information technology — Open Systems Interconnection — Basic Reference
Model — Convenrtions for the definition of OS! services

SAE J1850, Class B Data Communications Network Interface

Copyfight Inkemational Organtzetion for Standardization _—]
Rorotuced by RIE mde b © SO 2004 - Alll righis reserved
Na reproduction o networking permitted without kootose from IHS Mot for Resals

%)

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98

