

Reference number
ISO 14229:2006(E)

© ISO 2006

INTERNATIONAL
STANDARD

ISO
14229

Second edition
2006-12-01

Road vehicles — Unified diagnostic
services (UDS) — Specification and
requirements

Véhicules routiers — Services de diagnostic unifiés (SDU) —
Spécification et exigences

ISO 14229:2006(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2006
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2006 – All rights reserved

ISO 14229:2006(E)

© ISO 2006 – All rights reserved iii

Contents Page

Foreword... v
Introduction ... vi
1 Scope ... 1
2 Normative references ... 2
3 Terms and definitions... 3
4 Symbols and abbreviated terms ... 5
5 Conventions .. 5
6 Application layer services ... 6
6.1 General... 6
6.2 Format description of application layer services.. 8
6.3 Format description of standard service primitives ... 8
6.4 Format description of remote service primitives .. 10
6.5 Service data unit specification .. 13
7 Application layer protocol ... 19
7.1 General definition ... 19
7.2 Protocol data unit specification .. 19
7.3 Application protocol control information... 19
7.4 Negative response/confirmation service primitive ... 21
7.5 Server response implementation rules .. 22
8 Service description conventions .. 29
8.1 Service description... 29
8.2 Request message ... 30
8.3 Positive response message... 32
8.4 Supported negative response codes (NRC_) .. 34
8.5 Message flow examples ... 34
9 Diagnostic and communication management functional unit ... 36
9.1 Overview .. 36
9.2 DiagnosticSessionControl (10 hex) service... 36
9.3 ECUReset (11 hex) service .. 42
9.4 SecurityAccess (27 hex) service ... 45
9.5 CommunicationControl (28 hex) service.. 52
9.6 TesterPresent (3E hex) service ... 55
9.7 AccessTimingParameter (83 hex) service.. 58
9.8 SecuredDataTransmission (84 hex) service .. 63
9.9 ControlDTCSetting (85 hex) service ... 69
9.10 ResponseOnEvent (86 hex) service.. 73
9.11 LinkControl (87 hex) service.. 91
10 Data transmission functional unit... 97
10.1 Overview .. 97
10.2 ReadDataByIdentifier (22 hex) service ... 97
10.3 ReadMemoryByAddress (23 hex) service .. 102
10.4 ReadScalingDataByIdentifier (24 hex) service .. 106
10.5 ReadDataByPeriodicIdentifier (2A hex) service .. 112
10.6 DynamicallyDefineDataIdentifier (2C hex) service .. 123
10.7 WriteDataByIdentifier (2E hex) service... 143
10.8 WriteMemoryByAddress (3D hex) service ... 146

ISO 14229:2006(E)

iv © ISO 2006 – All rights reserved

11 Stored data transmission functional unit ... 152
11.1 Overview .. 152
11.2 ClearDiagnosticInformation (14 hex) service... 152
11.3 ReadDTCInformation (19 hex) service .. 154
12 InputOutput control functional unit... 208
12.1 Overview .. 208
12.2 InputOutputControlByIdentifier (2F hex) service... 209
13 Remote activation of routine functional unit.. 224
13.1 Overview .. 224
13.2 RoutineControl (31 hex) service.. 225
14 Upload download functional unit .. 231
14.1 Overview .. 231
14.2 RequestDownload (34 hex) service... 231
14.3 RequestUpload (35 hex) service.. 234
14.4 TransferData (36 hex) service.. 237
14.5 RequestTransferExit (37 hex) service... 242
Annex A (informative) Global parameter definitions... 250
Annex B (normative) Diagnostic and communication management functional unit data parameter

definitions .. 257
Annex C (normative) Data transmission functional unit data parameter definitions.............................. 259
Annex D (normative) Stored data transmission functional unit data parameter definitions.................. 272
Annex E (normative) Input output control functional unit data parameter definitions 289
Annex F (normative) Remote activation of routine functional unit data parameter definitions............. 290
Annex G (informative) Examples for addressAndLengthFormatIdentifier parameter values 291
Bibliography ... 293

ISO 14229:2006(E)

© ISO 2006 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 14229 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 3, Electrical
and electronic equipment.

This second edition of ISO 14229 cancels and replaces the first edition (ISO 14229:1998), which has been
technically revised.

ISO 14229:2006(E)

vi © ISO 2006 – All rights reserved

Introduction

ISO 14229 has been established in order to define common requirements for diagnostic systems, whatever
the serial data link is.

To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance
with ISO 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers. When
mapped on this model, the services used by a diagnostic tester (client) and an Electronic Control Unit (ECU,
server) are broken into:

⎯ unified diagnostic services (layer 7); and

⎯ communication services (layers 1 to 6).

NOTE The diagnostic services in ISO 14229 are implemented in various applications, e.g. ISO 16844 (all parts),
ISO 11992 (all parts), ISO 9141 (all parts), ISO 14230 (all parts), etc. Future modifications to this International Standard
will provide long-term backward compatibility with the implementation standards as described above.

Table 1 — Example of diagnostic/programming specifications applicable to the OSI layers

Applicability OSI layer Enhanced diagnostics services (non-emissions-related)

Application (layer 7) ISO 14229/ISO 15765-3/ISO 11992-4 ISO 14229/further standards

Presentation (layer 6) — —

Session (layer 5) ISO 15765-3/ISO 11992-4 further standards

Transport (layer 4) ISO 15765-2/ISO 11992-4 further standards

Network (layer 3) ISO 15765-2/ISO 11992-4 further standards

Data link (layer 2) ISO 11898/ISO 11992-1/SAE J1939-15 further standards

Seven layers
according to

ISO/IEC 7498-1
and

ISO/IEC 10731

Physical (layer 1) ISO 11898/ISO 11992-1/SAE J1939-15 further standards

Figure 1 shows an example of the possible future implementation of ISO 14229 onto various data links.

Figure 1 — Available International Standards and possible future implementations of ISO 14229

INTERNATIONAL STANDARD ISO 14229:2006(E)

© ISO 2006 – All rights reserved 1

Road vehicles — Unified diagnostic services (UDS) —
Specification and requirements

1 Scope

ISO 14229 specifies data link independent requirements of diagnostic services, which allow a diagnostic tester
(client) to control diagnostic functions in an on-vehicle Electronic Control Unit (server) such as an electronic
fuel injection, automatic gear box, anti-lock braking system, etc. connected on a serial data link embedded in a
road vehicle. It specifies generic services which allow the diagnostic tester (client) to stop or to resume non-
diagnostic message transmission on the data link. ISO 14229 does not apply to non-diagnostic message
transmission or to use of the communication data link between two Electronic Control Units. It does not
specify any implementation requirements.

The vehicle diagnostic architecture of ISO 14229 applies to:

⎯ a single tester (client) that may be temporarily or permanently connected to the on-vehicle diagnostic data
link; and

⎯ several on-vehicle Electronic Control Units (servers) connected directly or indirectly.

Figure 2 — Vehicle diagnostic architecture

ISO 14229:2006(E)

2 © ISO 2006 – All rights reserved

In Figure 2:

⎯ For vehicle 1, the servers are connected over an internal data link and indirectly connected to the
diagnostic data link through a gateway. ISO 14229 applies to the diagnostic communications over the
diagnostic data link; the diagnostic communications over the internal data link may conform to ISO 14229
or to another protocol.

⎯ For vehicle 2, the servers are directly connected to the diagnostic data link.

⎯ For vehicle 3, the servers are directly connected to the diagnostic data link through a gateway (same as
vehicle 2) and vehicle 4 connects its server/gateway directly to the vehicle 3 server/gateway.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 7498-1, Information technology — Open Systems Interconnection — Basic Reference Model: The Basic
Model

ISO/IEC 10731, Information technology — Open Systems Interconnection — Basic Reference Model —
Conventions for the definition of OSI services

ISO 11898 (all parts), Road vehicles — Controller area network (CAN)

ISO 11992-1, Road vehicles — Interchange of digital information on electrical connections between towing
and towed vehicles — Part 1: Physical and data-link layers

ISO 11992-4, Road vehicles — Interchange of digital information on electrical connections between towing
and towed vehicles — Part 4: Diagnostics

ISO 14230 (all parts), Road vehicles — Diagnostic systems — Keyword Protocol 2000

ISO 15765-2, Road vehicles — Diagnostics on Controller Area Networks (CAN) — Part 2: Network layer
services

ISO 15765-3, Road vehicles — Diagnostics on Controller Area Networks (CAN) — Part 3: Implementation of
unified diagnostic services (UDS on CAN)

ISO/TR 15031-2, Road vehicles — Communication between vehicle and external equipment for emissions-
related diagnostics — Part 2: Terms, definitions, abbreviations and acronyms

ISO 15031-5, Road vehicles — Communication between vehicle and external equipment for emissions-related
diagnostics — Part 5: Emissions-related diagnostic services

ISO 15031-6, Road vehicles — Communication between vehicle and external equipment for emissions-related
diagnostics — Part 6: Diagnostic trouble code definitions

ISO 15031-7, Road vehicles — Communication between vehicle and external equipment for emissions-related
diagnostics — Part 7: Data link security

ISO 15764, Road vehicles — Extended data link security

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 3

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
integer type
simple type with distinguished values which are the positive and the negative whole numbers

NOTE The range of integer type is not specified within this document.

3.2
diagnostic trouble code
numerical common identifier for a fault condition identified by the on-board diagnostic system

3.3
diagnostic service
information exchange initiated by a client in order to require diagnostic information from a server and/or to
modify its behaviour for diagnostic purposes

3.4
client
function that is part of the tester and that makes use of the diagnostic services

NOTE A tester normally makes use of other functions such as database management, specific interpretation, human-
machine interface.

3.5
server
function that is part of an electronic control unit and that provides the diagnostic services

NOTE ISO 14229 differentiates between the server (i.e. the function) and the electronic control unit so that this
International Standard remains independent from the implementation.

3.6
tester
system that controls functions such as test, inspection, monitoring or diagnosis of an on-vehicle electronic
control unit and which may be dedicated to a specific type of operator (e.g. a scan tool dedicated to garage
mechanics or a test tool dedicated to assembly plant agents)

NOTE The tester is also referenced as the client.

3.7
diagnostic data
data that is located in the memory of an electronic control unit which may be inspected and/or possibly
modified by the tester (diagnostic data includes analogue inputs and outputs, digital inputs and outputs,
intermediate values and various status information)

EXAMPLES Examples of diagnostic data include vehicle speed, throttle angle, mirror position, system status, etc.
Three types of values are defined for diagnostic data:

⎯ the current value: the value currently used by (or resulting from) the normal operation of the electronic control unit;

⎯ a stored value: an internal copy of the current value made at specific moments, e.g. when a malfunction occurs or
periodically (this copy is made under the control of the electronic control unit);

⎯ a static value: e.g. VIN; the server is not obliged to keep internal copies of its data for diagnostic purposes, in which
case the tester may only request the current value.

ISO 14229:2006(E)

4 © ISO 2006 – All rights reserved

3.8
diagnostic session
current mode of the server, which affects the level of diagnostic functionality

NOTE Defining a repair shop or development testing session selects different server functionality (e.g. access to all
memory locations may only be allowed in the development testing session).

3.9
diagnostic routine
routine that is embedded in an electronic control unit and that may be started by a server upon a request from
the client

NOTE It could either run instead of a normal operating program or run concurrently to the normal operating program.
In the first case, normal operation of the ECU is not possible. In the second case, multiple diagnostic routines may be
enabled that run while all other parts of the electronic control unit are functioning normally.

3.10
record
one or more diagnostic data elements that are referred to together by a single means of identification

NOTE A snapshot including various input/output data and trouble codes is an example of a record.

3.11
security
as used in ISO 14229, security access method that satisfies the requirements for tamper protection as
specified in ISO 15031-7

3.12
functional unit
set of functionally close or complementary diagnostic services

3.13
local server
server that is connected to the same local network as the client and is part of the same address space as the
client

3.14
local client
client that is connected to the same local network as the server and is part of the same address space as the
server

3.15
remote server
server that is not directly connected to the main diagnostic network

NOTE 1 A remote server is identified by means of a remote network address. Remote network addresses represent an
own network address space that is independent from the addresses on the main network.

NOTE 2 A remote server is reached via a local server on the main network. Each local server on the main network can
act as a gate to one independent set of remote servers. A pair of addresses will therefore always identify a remote server:
a local address that identifies the gate to the remote network and a remote address identifying the remote server itself.

3.16
remote client
client that is not directly connected to the main diagnostic network

NOTE A remote client is identified by means of a remote network address. Remote network addresses represent an
own address space that is independent from the addresses on the main network.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 5

3.17
permanent DTC
stored in NVRAM and not erasable by any test equipment command or by disconnecting power to the
on-board computer

4 Symbols and abbreviated terms

A_PCI Application layer Protocol Control Information

A_PDU Application layer Protocol Data Unit

A_SDU Application layer Service Data Unit

ECU Electronic Control Unit

NOTE An ECU contains at least one server. Systems considered as Electronic Control Units include anti-lock braking
system (ABS), engine management system, etc.

NR_SI Negative Response Service Identifier

OBD On-Board Diagnostic

OSI Open Systems Interconnection

RA Remote Address

SA Source Address

SI Service Identifier

TA Target Address

TA_type Target Address type

5 Conventions

ISO 14229 is guided by the conventions discussed in the OSI Service Conventions (ISO 10731) as they apply
to diagnostic services. These conventions specify the interactions between the service user and the service
provider. Information is passed between the service user and the service provider by service primitives, which
may convey parameters.

The distinction between service and protocol is summarized in Figure 3.

ISO 14229 defines both, confirmed and unconfirmed services.

⎯ Confirmed services use the six (6) service primitives, request, req_confirm, indication, response,
rsp_confirm and confirmation.

⎯ Unconfirmed services use only the request, req_confirm and indication service primitives.

For all services defined in ISO 14229, the request and indication service primitives always have the same
format and parameters. Consequently, for all services the response and confirmation service primitives
(except req_confirm and rsp_confirm) always have the same format and parameters. When the service
primitives are defined in this International Standard, only the request and response service primitives are
listed.

ISO 14229:2006(E)

6 © ISO 2006 – All rights reserved

Figure 3 — The services and the protocol

6 Application layer services

6.1 General

Application layer services are usually referred to as diagnostic services. The application layer services are
used in client-server-based systems to perform functions such as test, inspection, monitoring or diagnosis of
on-board vehicle servers. The client, usually referred to as an External Test Equipment, uses the application
layer services to request diagnostic functions to be performed in one or more servers. The server, usually a
function that is part of an ECU, uses the application layer services to send response data, provided by the
requested diagnostic service, back to the client. The client is usually an off-board tester but can, in some
systems, also be an on-board tester. The usage of application layer services is independent from the client
being an off-board or on-board tester. It is possible to have more than one client in the same vehicle system.

The service access point of the diagnostics application layer provides a number of services that all have the
same general structure. For each service, six (6) service primitives are specified:

⎯ a service request primitive, used by the client function in the diagnostic tester application to pass data
about a requested diagnostic service to the diagnostics application layer;

⎯ a service request-confirmation primitive, used by the client function in the diagnostic tester application
to indicate that the data passed in the service request primitive is completely transferred to the server;

⎯ a service indication primitive, used by the diagnostics application layer to pass data to the server
function of the ECU diagnostic application;

⎯ a service response primitive, used by the server function in the ECU diagnostic application to pass
response data provided by the requested diagnostic service to the diagnostics application layer;

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 7

⎯ a service response-confirmation primitive, used by the server function in the ECU diagnostic
application to indicate that the data passed in the service response primitive is completely transferred to
the client;

⎯ a service confirmation primitive, used by the diagnostics application layer to pass data to the client
function in the diagnostic tester application.

Figure 4 — Application layer service primitives — confirmed service

Figure 5 — Application layer service primitives — unconfirmed service

For a given service, the request primitive and the indication primitive always have the same service data unit.
ISO 14229 will only list and specify the parameters of the service data unit belonging to each service request
primitive. The user shall assume exactly the same parameters for each corresponding service indication
primitive.

For a given service, the response primitive and the confirmation primitive always have the same service data
unit. ISO 14229 only lists and specifies the parameters of the service data unit belonging to each service
response primitive. The user shall assume exactly the same parameters for each corresponding service
confirmation primitive.

ISO 14229:2006(E)

8 © ISO 2006 – All rights reserved

For each service response primitive (and corresponding service confirmation primitive), two different service
data units (two sets of parameters) will be specified. One set of parameters shall be used in a positive service
response primitive if the requested diagnostic service can be successfully performed by the server function in
the ECU diagnostic application. The other set of parameters (the negative response service data unit) shall be
used if the requested diagnostic service fails or cannot be completed in time by the server function in the ECU
diagnostic application.

For a given service, the request-confirmation primitive and the response-confirmation primitive always have
the same service data unit. The purpose of these service primitives is to indicate the completion of an earlier
request or response service primitive invocation. The service descriptions in ISO 14229 do not make use of
those service primitives, but the data link specific implementation documents might use them to define e.g.
service execution reference points (e.g. the ECUReset service would reset the ECU after the response has
been completely transmitted to the client, which is indicated in the server by the service response-confirm
primitive).

6.2 Format description of application layer services

Application layer services can have two different formats depending on how the vehicle diagnostic system is
configured.

If the vehicle system is configured as a single (one logical) diagnostic network where all clients and servers
are connected directly, then the default (also called normal or standard) format of application layer services
shall be used. This format is compatible with the diagnostic system formats used on data links such as K- and
L-lines. The default application layer services format is specified in 6.3.

The remote format of application layer services shall be used in vehicle systems implementing the concept of
local servers and remote servers. The remote format has one additional address parameter called remote
address. The remote format is used to access servers that are not directly connected to the main diagnostic
network in the vehicle. The remote format for application layer services is specified in 6.4.

6.3 Format description of standard service primitives

6.3.1 General definition

All application layer services have the same general format. Service primitives are written in the form:

service_name.type (
parameter A, parameter B, parameter C
[,parameter 1, ...]
)

where:

⎯ “service_name” is the name of the diagnostic service (e.g. DiagnosticSessionControl);

⎯ “type” indicates the type of the service primitive (e.g. request);

⎯ “parameter A, ...” is the A_SDU as a list of values passed by the service primitive (addressing
information);

⎯ “parameter A, parameter B, parameter C” are mandatory parameters that shall be included in all service
calls;

⎯ “[,parameter 1, ...]” are parameters that depend on the specific service (e.g. parameter 1 can be the
diagnosticSession for the DiagnosticSessionControl service). The brackets indicate that this part of the
parameter list may be empty.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 9

6.3.2 Service request and service indication primitives

For each application layer service, service request and service indication primitives are specified according to
the following general format:

service_name.request (
SA,
TA,
TA_type
[,parameter 1, ...]
)

The request primitive is used by the client function in the diagnostic tester application to initiate the service
and pass data about the requested diagnostic service to the application layer.

service_name.indication (
SA,
TA,
TA_type
[,parameter 1, ...]
)

The indication primitive is used by the application layer to indicate an internal event which is significant to the
ECU diagnostic application and to pass data about the requested diagnostic service to the server function of
the ECU diagnostic application.

The request and indication primitives of a specific application layer service always have the same parameters
and parameter values. This means that the values of individual parameters shall not be changed by the
communicating peer protocol entities of the application layer when the data is transmitted from the client to the
server. The same values that are passed by the client function in the client application to the application layer
in the service request call shall be received by the server function of the diagnostic application from the
service indication of the peer application layer.

6.3.3 Service response and service confirm primitives

For each confirmed application layer service, service response and service confirm primitives are specified
according to the following general format:

service_name.response (
SA,
TA,
TA_type,
Result
[,parameter 1, ...]
)

The response primitive is used by the server function in the ECU diagnostic application, to initiate the service
and pass response data provided by the requested diagnostic service to the application layer.

service_name.confirm (
SA,
TA,
TA_type,
Result
[,parameter 1, ...]
)

ISO 14229:2006(E)

10 © ISO 2006 – All rights reserved

The confirm primitive is used by the application layer to indicate an internal event which is significant to the
client application and to pass results of an associated previous service request to the client function in the
diagnostic tester application. It does not necessarily indicate any activity at the remote peer interface, e.g. if
the requested service is not supported by the server or if the communication is broken.

The response and confirm primitives of a specific application layer service always have the same parameters
and parameter values. This means that the values of individual parameters shall not be changed by the
communicating peer protocol entities of the application layer when the data is transmitted from the server to
the client. The same values that are passed by the server function of the ECU diagnostic application to the
application layer in the service response call shall be received by the client function in the diagnostic tester
application from the service confirmation of the peer application layer.

For each response and confirm primitive two different service data units (two sets of parameters) will be
specified.

⎯ A positive response and positive confirm primitive shall be used with the first service data unit if the
requested diagnostic service could be successfully performed by the server function in the ECU.

⎯ A negative response and confirm primitive shall be used with the second service data unit if the requested
diagnostic service failed or could not be completed in time by the server function in the ECU.

6.3.4 Service request-confirm and service response-confirm primitives

For each application layer service, service request-confirm and service response-confirm primitives are
specified according to the following general format:

service_name.req_confirm (
SA,
TA,
TA_type,
Result
)

The request-confirm primitive is used by the application layer to indicate an internal event, which is significant
to the client application, and pass results of an associated previous service request to the client function in the
diagnostic tester application.

service_name.rsp_confirm (
SA,
TA,
TA_type,
Result
)

The response-confirm primitive is used by the application layer to indicate an internal event, which is
significant to the server application, and pass results of an associated previous service response to the server
function in the ECU application.

6.4 Format description of remote service primitives

6.4.1 General definition

Diagnostic communication between a local client and a remote server can take place if the remote format of
application layer services is used. All definitions made for the default format of application layer services shall
be applicable also for the remote format of application layer services with the addition of one more addressing
parameter.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 11

Diagnostic communication can take place between a local client on the main network and one or more remote
servers on a remote network. Communication can also take place between a remote client on a remote
network and one or more local servers on the main network.

Diagnostic communication cannot take place between any combination of clients and servers on two different
remote networks.

All remote format application layer services have the same general format. Service primitives are written in the
form:

service_name.type (
parameter A, parameter B, parameter C,
parameter D
[,parameter 1, ...]
)

where:

⎯ “service_name” is the name of the diagnostic service (e.g. DiagnosticSessionControl);

⎯ “type” indicates the type of the service primitive (e.g. request);

⎯ “parameter A, ...” is the A_SDU as a list of values passed by the service primitive (addressing
information);

⎯ “parameter A, parameter B, parameter C” are mandatory parameters that shall be included in all service
calls;

⎯ “parameter D” is an additional parameter that is only used in vehicles implementing the concept of remote
servers (remote address);

⎯ “[,parameter 1, ...]” are parameters that depend on the specific service (e.g. parameter 1 can be the
diagnosticSession for the DiagnosticSessionControl service). The brackets indicate that this part of the
parameter list may be empty.

6.4.2 Remote service request and service indication primitives

For each remote format application layer service, service request and service indication primitives are
specified according to the following general format:

service_name.request (
SA,
TA,
TA_type
[,RA]
[,parameter 1, ...]
)

The request primitive is used by the local client function in the client application, to initiate the service and
pass data about the requested diagnostic service to the application layer.

service_name.indication (
SA,
TA,
TA_type
[,RA]
[,parameter 1, ...]
)

ISO 14229:2006(E)

12 © ISO 2006 – All rights reserved

The indication primitive is used by the remote application layer to indicate an internal event which is significant
to the ECU diagnostic application and to pass data about the requested diagnostic service to the remote
server function of the ECU diagnostic application.

The request and indication primitive of a specific application layer service always have the same parameters
and parameter values. This means that the values of individual parameters shall not be changed by the
communicating peer protocol entities of the application layer when the data is transmitted from the client to the
server. The same values that are passed by the client function in the diagnostic tester application to the
application layer in the service request call shall be received by the server function of the ECU application
from the service indication of the peer application layer.

NOTE For clarity, the text assumes communication between a local client and one or more remote server. The
protocol also supports communication between a remote client and one or more local servers using the same remote
format application layer services.

6.4.3 Remote service response and service confirm primitives

For each remote format application layer service, service response and service confirm primitives are
specified according to the following general format:

service_name.response (
SA,
TA,
TA_type,
[RA,]
Result
[,parameter 1, ...]
)

The response primitive is used by the remote server function in the ECU diagnostic application, to initiate the
service and pass response data provided by the requested diagnostic service to the application layer.

service_name.confirm (
SA,
TA,
TA_type,
[RA,]
Result
[,parameter 1, ...]
)

The confirm primitive is used by the local application layer to indicate an internal event which is significant to
the client application and to pass results of an associated previous service request to the client function in the
ECU application. It does not necessarily indicate any activity at the remote peer interface, e.g. if the requested
service is not supported by the server or if the communication is broken.

The response and confirm primitive of a specific application layer service always has the same parameters
and parameter values. This means that the values of individual parameters shall not be changed by the
communicating peer protocol entities of the application layer when the data is transmitted from the server to
the client. The same values that are passed by the server function of the ECU diagnostic application to the
application layer in the service response call shall be received by the client function in the diagnostic tester
application from the service confirmation of the peer application layer.

For each response and confirm primitive, two different service data units (two sets of parameters) will be
specified.

⎯ A positive response and positive confirm primitive shall be used with the first service data unit if the
requested diagnostic service could be successfully performed by the server function in the ECU.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 13

⎯ A negative response and confirm primitive shall be used with the second service data unit if the requested
diagnostic service failed or could not be completed in time by the server function in the ECU.

NOTE For clarity, the text assumes communication between a local client and one or more remote server. The
protocol also supports communication between a remote client and one or more local servers using the same remote
format application layer services.

6.4.4 Remote service request-confirm and service response-confirm primitives

For each application layer service, service request-confirm and service response-confirm primitives are
specified according to the following general format:

service_name.req_confirm (
SA,
TA,
TA_type,
[RA,]
Result
)

The request-confirm primitive is used by the client application layer to indicate an internal event which is
significant to the client application and to pass results of an associated previous service request to the client
function in the ECU application.

service_name.rsp_confirm (
SA,
TA,
[RA,]
TA_type,
Result,
)

The response-confirm primitive is used by the server application layer to indicate an internal event which is
significant to the server application and to pass results of an associated previous service response to the
server function in the ECU application.

6.5 Service data unit specification

6.5.1 Mandatory parameters

6.5.1.1 General definition

The application layer services contain three (3) mandatory parameters. The following parameter definitions
are applicable to all application layer services specified in this International Standard (standard and remote
format).

6.5.1.2 Source address (SA)

Type: 1 byte unsigned integer value

Range: 00-FF hex

Description:

The parameter SA shall be used to encode client and server identifiers, and it shall be used to represent the
physical location of a client or server.

ISO 14229:2006(E)

14 © ISO 2006 – All rights reserved

For service requests (and service indications), SA represents the client identifier for the client function that has
requested the diagnostic service. The client shall always be located in one diagnostic tester only. There shall
be a strict, one-to-one relation between client identifiers and source addresses. Each client identifier shall be
encoded with one SA value. If more than one client is implemented in the same diagnostic tester, then each
client shall have its own client identifier and corresponding SA value.

For service responses (and service confirmations), SA represents the physical location of the server that has
performed the requested diagnostic service. A server may be implemented in one ECU only or be distributed
and implemented in several ECUs. If a server is implemented in one ECU only, then it shall be encoded with
one SA value only. If a server is distributed and implemented in several ECUs, then the server identifier shall
be encoded with one SA value for each physical location of the server.

If a remote client or server is the original source for a message, then SA represents the local server that is the
gate from the remote network to the main network.

NOTE The SA value in a response message will be the same as the TA value in the corresponding request message
if physical addressing was used for the request message.

6.5.1.3 Target address (TA)

Type: 1 byte unsigned integer value

Range: 00-FF hex

Description:

The parameter TA shall be used to encode client and server identifiers.

Two different addressing methods, called physical addressing and functional addressing, are specified for
diagnostics. Therefore, two independent sets of target addresses can be defined for a vehicle system (one for
each addressing method).

Physical addressing shall always be a dedicated message to a server implemented in one ECU. When
physical addressing is used, the communication is a point-to-point communication between the client and the
server.

Functional addressing is used by the client if it does not know the physical address of the server that will
respond to a service request or if the server is implemented as a distributed server in several ECUs. When
functional addressing is used, the communication is a broadcast communication from the client to a server
implemented in one or more ECUs.

For service requests (and service indications), TA represents the server identifier for the server that will
perform the requested diagnostic service. If a remote server is being addressed, then TA represents the local
server that is the gate from the main network to the remote network.

For service responses (and service confirmations), TA represents the client identifier for the client that
originally requested the diagnostic service and will receive the requested data. Service responses (and
service confirmations) shall always use physical addressing. If a remote client is being addressed, then TA
represents the local server that is the gate from the main network to the remote network.

NOTE The TA value of a response message will always be the same as the SA value of the corresponding request
message.

6.5.1.4 TA_Type, Target Address type

Type: enumeration

Range: physical, functional

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 15

Description:

The parameter TA_type is an extension to the TA parameter. It is used to represent the addressing method
chosen for a message transmission.

6.5.1.5 Result

Type: enumeration

Range: positive, negative

Description:

The parameter “Result” is used by the response and confirm primitives to indicate if a message is a positive
response/positive confirm message or a negative response/negative confirm message. The service-specific
parameters in the message are different depending on the value of the Result parameter.

6.5.2 Vehicle system requirements

The vehicle manufacturer shall ensure that each server in the system has a unique server identifier. The
vehicle manufacturer shall also ensure that each client in the system has a unique client identifier.

All client and server identifiers for the main diagnostic network in a vehicle system shall be encoded into the
same range of source addresses. This means that a client and a server shall not be represented by the same
SA value in a given vehicle system.

The physical target address for a server shall always be the same as the source address for the server.

Remote server identifiers can be assigned independently from client and server identifiers on the main
network.

In general only the server(s) addressed shall respond to the client request message.

6.5.3 Optional parameters

6.5.3.1 Remote address (RA)

Type: 1 byte unsigned integer value

Range: 00-FF hex

Description:

RA is used to extend the available address range to encode client and server identifiers. RA shall only be
used in vehicles that implement the concept of local servers and remote servers. Remote addresses represent
their own address range and are independent from the addresses on the main network.

The parameter RA shall be used to encode remote client and server identifiers. RA can represent either a
remote target address or a remote source address, depending on the direction of the message carrying the
RA.

For service requests (and service indications) sent by a client on the main network, RA represents the remote
server identifier (remote target address) for the server that will perform the requested diagnostic service.

RA can be used both as a physical and a functional address. For each value of RA, the system builder shall
specify if that value represents a physical or functional address.

ISO 14229:2006(E)

16 © ISO 2006 – All rights reserved

NOTE There is no special parameter that represents physical or functional remote addresses in the way TA_type
specifies the addressing method for TA. Physical and functional remote addresses share the same 1 byte range of values
and the meaning of each value shall be defined by the system builder.

For service responses (and service confirmations) sent by a remote server, RA represents the physical
location (remote source address) of the remote server that has performed the requested diagnostic service.

A remote server may be implemented in one ECU only or be distributed and implemented in several ECUs. If
a remote server is implemented in one ECU only, then it shall be encoded with one RA value only. If a remote
server is distributed and implemented in several ECUs, then the remote server identifier shall be encoded with
one RA value for each physical location of the remote server.

For service requests (and service indications) sent by a remote client, RA represents the remote server
identifier (remote source address) for the client function that has requested the diagnostic service.

For service responses (and service confirmations) sent by a local server, RA represents the remote client
identifier (remote target address) for the client that originally requested the diagnostic service and shall
receive the requested data.

6.5.3.2 Remote server example with remote network

In some systems, the remote server is connected to a remote network separated from the main diagnostic
network by a gateway. The following is an example showing how the parameters SA, TA and RA shall be
used for proper communication between a local client on the main network and a remote server via a gateway.
In the example, it is assumed that the same type of addressing is used on the remote network as on the main
network.

The external test equipment is connected to the main network and has client identifier 241 (F1 hex). The
gateway is connected to both the main network and the remote network. On the main network the gateway
has client identifier 200 (C8 hex). On the remote network, the gateway has client identifier 10 (0A hex). The
remote server is connected to the remote network and has client identifier 62 (3E hex). The configuration is
described in Figure 6.

Figure 6 — Remote server system example 1

The external test equipment sends a remote diagnostic request message with

⎯ SA = 241 (F1 hex),

⎯ TA = 200 (C8 hex), and

⎯ RA = 62 (3E hex).

The gateway receives the message and sends it out on the remote network with

⎯ SA = 10 (0A hex),

⎯ TA = 62 (3E hex), and

⎯ RA = 241 (F1 hex).

The remote server receives the message.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 17

The remote server sends back a remote diagnostic response message with

⎯ SA = 62 (3E hex),

⎯ TA = 10 (0A hex), and

⎯ RA = 241 (F1 hex).

The gateway receives the message and sends it out on the main network with

⎯ SA = 200 (C8 hex),

⎯ TA = 241 (F1 hex), and

⎯ RA = 62 (3E hex).

The external test equipment receives the message.

6.5.3.3 Remote server example without remote network

In some systems, the remote server is a functional part of a server belonging to the main network. The server
has been given a remote server identifier in order to extend the available address range to encode client and
server identifiers. In such systems the remote server is logically separated from the main network even if the
ECU, of which the remote server is a part, is connected to the main diagnostic network. To get a working
system, the server must also have a gateway function that is part of the main diagnostic network and can
serve as a gate to the remote server. The following is an example showing how the parameters SA, TA and
RA are used for proper communication between a local client on the main network and a remote server via a
gateway.

The external test equipment is connected to the main network and has client identifier 241 (F1 hex). The
gateway is connected to the same main network. The gateway has client identifier 200 (C8 hex). The remote
server has client identifier 62 (3E hex). The configuration is described in Figure 7.

Figure 7 — Remote server system example 2

The external test equipment sends a remote diagnostic request message with

⎯ SA = 241 (F1 hex),

⎯ TA = 200 (C8 hex), and

⎯ RA = 62 (3E hex).

The gateway receives the message and passes it over to the remote server function. The remote server
receives the message.

ISO 14229:2006(E)

18 © ISO 2006 – All rights reserved

The remote server sends back a remote diagnostic response message by passing it to the gateway function.
The gateway receives the message and sends it out on the main network with

⎯ SA = 200 (C8 hex),

⎯ TA = 241 (F1 hex), and

⎯ RA = 62 (3E hex).

The external test equipment receives the message.

6.5.3.4 Remote client example with remote network

In some systems, the client is connected to a remote network separated from the main diagnostic network by
a gateway. The following is an example showing how the parameters SA, TA and RA are used for proper
communication between a remote client on a remote network and a local server on the main network via a
gateway. In the example, it is assumed that the same type of addressing is used on the remote network as on
the main network.

The external test equipment is connected to the remote network and has client identifier 242 (F2 hex). The
gateway is connected to both the main network and the remote network. On the main network, the gateway
has client identifier 200 (C8 hex). On the remote network, the gateway has client identifier 10 (0A hex). The
local server is connected to the main network and has client identifier 18 (12 hex). The configuration is
described in Figure 8.

Figure 8 — Remote client example

The external test equipment sends a remote diagnostic request message with

⎯ SA = 242 (F1 hex),

⎯ TA = 10 (0A hex), and

⎯ RA = 18 (12 hex).

The gateway receives the message and sends it out on the main network with

⎯ SA = 200 dec,

⎯ TA = 18 dec, and

⎯ RA = 242 dec.

The local server receives the message.

The local server sends back a remote diagnostic response message with

⎯ SA = 18 (12 hex),

⎯ TA = 200 (C8 hex), and

⎯ RA = 242 (F1 hex).

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 19

The gateway receives the message and sends it out on the remote network with

⎯ SA = 10 (0A hex),

⎯ TA = 242 (F1 hex), and

⎯ RA = 18 (12 hex).

The external test equipment receives the message.

7 Application layer protocol

7.1 General definition

The application layer protocol shall always be a confirmed message transmission, meaning that for each
service request sent from the client, there shall be one or more corresponding responses sent from the server.

The only exception to this rule shall be a few cases when e.g. functional addressing is used or the
request/indication specifies that no response/confirmation shall be generated. In order not to burden the
system with many unnecessary messages, there are a few cases when negative response messages shall
not be sent even if the server failed to complete the requested diagnostic service.

The application layer protocol shall be handled in parallel with the session layer protocol. This means that,
even if the client is waiting for a response to a previous request, it shall maintain proper session layer timing
(e.g. sending a TesterPresent request if that is needed to keep a diagnostic session going in other servers;
the implementation depends on the data link layer used).

7.2 Protocol data unit specification

The A_PDU is directly constructed from the A_SDU and the layer-specific control information A_PCI
(Application layer Protocol Control Information). The A_PDU shall have the following general format:

A_PDU (
SA,
TA,
TA_type,
[RA,]
A_Data = A_PCI + [parameter 1, ...]
)

where:

⎯ “SA, TA, TA_type, RA” are the same parameters as used in the A_SDU;

⎯ “A_Data” is a string of byte data defined for each individual application layer service. The A_Data string
shall start with the A_PCI followed by all service-specific parameters from the A_SDU as specified for
each service. The brackets indicate that this part of the parameter list may be empty.

7.3 Application protocol control information

The A_PCI shall have two alternative formats depending on which type of service primitive that has been
called and the value of the Result parameter. For all service requests and for service responses/service
confirmations with Result = positive, the following definition shall apply:

A_PCI (
SI
)

where “SI” is the parameter service identifier.

ISO 14229:2006(E)

20 © ISO 2006 – All rights reserved

For service responses/service confirmations with Result = negative, the following definition shall apply:

A_PCI (
NR_SI,
SI
)

where:

⎯ “NR_SI” is the special parameter identifying negative service responses/confirmations;

⎯ “SI” is the parameter service identifier.

NOTE For the transmission of periodic messages utilizing response message type #2 as defined in the service
ReadDataByPeriodicIdentifier (2A hex, see 10.5) no A_PCI is present in the application layer protocol data unit (A_PDU).

7.3.1 Service identifier (SI)

Type: 1 byte unsigned integer value

Range: 00-FF hex according to definitions in Table 2

Table 2 — Service identifier (SI) values

Service identifier
(hex value)

Service type
(bit 6) Where defined

00 – 0F OBD service requests ISO 15031-5

10 – 3E ISO 14229 service requests ISO 14229

3F Not applicable Reserved by document

40 – 4F OBD service responses ISO 15031-5

50 – 7E ISO 14229 positive service responses ISO 14229

7F Negative response service identifier ISO 14229

80 Not applicable Reserved by ISO 14229

81 – 82 Not applicable Reserved by ISO 14230

83 – 88 ISO 14229 service requests ISO 14229

89 – 9F Service requests Reserved for future expansion as needed

A0 – B9 Service requests Defined by vehicle manufacturer

BA – BE Service requests Defined by system supplier

BF Not applicable Reserved by document

C0 Not applicable Reserved by ISO 14229

C1 – C2 Not applicable Reserved by ISO 14230

C3 – C8 ISO 14229 positive service responses ISO 14229

C9 – DF Positive service responses Reserved for future expansion as needed

E0 – F9 Positive service responses Defined by vehicle manufacturer

FA – FE Positive service responses Defined by system supplier

FF Not applicable Reserved by document

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 21

NOTE There is a one-to-one correspondence between service identifiers for request messages and service
identifiers for positive response messages, with bit 6 of the SI hex value indicating the service type. All request messages
have SI bit 6 = 0. All positive response messages have SI bit 6 = 1, except response message type #2 of the
ReadDataByPeriodicIdentifier (2A hex, see section 10.5) service.

Description:

The SI shall be used to encode the specific service that has been called in the service primitive. Each request
service shall be assigned a unique SI value. Each positive response service shall be assigned a
corresponding unique SI value.

The service identifier is used to represent the service in the A_Data data string that is passed from the
application layer to lower layers (and returned from lower layers).

7.3.2 Negative response service identifier (NR_SI)

Type: 1 byte unsigned integer value

Fixed value: 7F hex

Description:

The parameter NR_SI is a special parameter identifying negative service responses/confirmations. It shall be
part of the A_PCI for negative response/confirm messages.

NOTE The NR_SI value is coordinated with the SI values. The NR_SI value is not used as an SI value in order to
make A_Data coding and decoding easier.

7.4 Negative response/confirmation service primitive

Each diagnostic service has a negative response/negative confirmation message specified with message
A_Data bytes according to Table 3. The first A_Data byte (A_PCI.NR_SI) is always the specific negative
response service identifier. The second A_Data byte (A_PCI.SI) shall be a copy of the service identifier value
from the service request/indication message to which the negative response message corresponds.

Table 3 — Negative response A_PDU

A_PDU parameter Parameter name Cvt Hex value Mnemonic

SA Source Address Ma xx SA

TA Target Address M xx TA

TA_type Target Address type M xx TA_type

RA Remote Address (optional) Cb xx RA

A_Data.A_PCI.NR_SI Negative Response Service Id M 7F SIDNR

A_Data.A_PCI.SI <Service Name> Request Service Id M xx SIDRQ

A_Data.Parameter 1 responseCode M xx NRC_

a M (Mandatory): In case the negative response A_PDU is issued then those A_PDU parameters shall be present.

b C (Conditional): The RA (Remote Address) PDU parameter is only present in case of remote addressing.

NOTE A_Data represents the message data bytes of the negative response message.

The parameter responseCode is used in the negative response message to indicate why the diagnostic
service failed or could not be completed in time. Values are defined in A.1.

ISO 14229:2006(E)

22 © ISO 2006 – All rights reserved

7.5 Server response implementation rules

7.5.1 General definitions

The following subclauses specify the behaviour of the server when executing a service. The server and the
client shall follow these implementation rules.

Legend for subclauses 7.5.2, 7.5.3 and 7.5.4

Abbreviation Description

suppressPosRspMsgIndicationBit TRUE = server shall NOT send a positive response message

FALSE = server shall send a positive or negative response message

PosRsp Abbreviation for positive response message

NegRsp Abbreviation for negative response message

NoRsp Abbreviation for NOT sending a positive or negative response message

NRC Abbreviation for negative response code

ALL All of the requested data parameters (service without sub-function parameter) of the
client request message are supported by the server

at least 1 At least 1 data parameter (service without sub-function parameter) of the client request
message must be supported by the server

NONE None of the requested data parameters (service without sub-function parameter) of the
client request message is supported by the server

The server shall support its list of diagnostic services regardless of addressing mode (physical, functional
addressing type).

IMPORTANT — As required by the tables in the following subclauses, negative response messages
with negative response codes of SNS (serviceNotSupported), SFNS (subFunctionNotSupported) and
ROOR (requestOutOfRange) shall never be transmitted when functional addressing was used for the
request message.

7.5.2 Request message with sub-function parameter and server response behaviour

7.5.2.1 Physically addressed client request message

The server response behaviour specified in this subclause is referenced in the service description of each
service, which supports a sub-function parameter in the physically addressed request message received from
the client.

Table 4 shows possible communication schemes with physical addressing.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 23

Table 4 — Physically addressed request message with sub-function parameter
and server response behaviour

Client request message Server capability Server response

Server
case # Addressin

g
scheme

subFunction
(suppress-

PosRspMsg-
Indication-

Bit)

Service ID
supported

Sub-
function

supported

Data
parameter
supported

(only if
applicable)

Message
Negative:

NRC/
section

Comments on server
response

1 At least 1 PosRsp — Server sends positive
response

2
YES YES

— NRC=xx

Server sends negative
response because error
occurred reading the
data parameters of the
request message

3 NO — — NRC=SNS Negative response with
NRC 11 hex

4

FALSE
(bit = 0)

YES NO —

NegRsp

NRC=SFNS Negative response with
NRC 12 hex

5 At least 1 NoRsp — Server does NOT send
a response

6
YES YES

— NRC=xx

Server sends negative
response because error
occurred reading the
data parameters of the
request message

7 NO — — NRC=SNS Negative response with
NRC 11 hex

8

physical

TRUE
(bit = 1)

YES NO —

NegRsp

NRC=SFNS Negative response with
NRC 12 hex

The following is a description of server response cases on physically addressed client request messages with
subFunction.

1) Server sends a positive response message because the service identifier and sub-function parameter is
supported by the client’s request with indication for a response message.

2) Server sends a negative response message (e.g. IMLOIF: incorrectMessageLengthOrIncorrectFormat)
because the service identifier and sub-function parameter of the client's request is supported but some
other error appeared (e.g. wrong PDU length according to service identifier and sub-function parameter in
the request message) during processing of the sub-function.

3) Server sends a negative response message with the negative response code SNS (service not
supported) because the service identifier of the client’s request is not supported with indication for a
response message.

4) Server sends a negative response message with the negative response code SFNS (sub-function not
supported) because the service identifier is supported and the sub-function parameter of the client's
request is not supported with indication for a response message.

5) Server sends no response message because the service identifier and sub-function parameter is
supported by the client’s request with indication for no response message. If a negative response code
RCRRP (requestCorrectlyReceivedResponsePending) is used, a final response shall be given
independent of the suppressPosRspMsgIndicationBit value.

ISO 14229:2006(E)

24 © ISO 2006 – All rights reserved

6) Same effect as in 2) (e.g. a negative response message is sent) because the
suppressPosRspMsgIndicationBit is ignored for any negative response that needs to be sent upon receipt
of a physically addressed request message.

7) Same effect as in 3) (e.g. the negative response message is sent) because the
suppressPosRspMsgIndicationBit is ignored for any negative response that needs to be sent upon receipt
of a physically addressed request message.

8) Same effect as in 4) (e.g. the negative response message is sent) because the
suppressPosRspMsgIndicationBit is ignored for any negative response that needs to be sent upon receipt
of a physically addressed request message.

7.5.2.2 Functionally addressed client request message

The server response behaviour specified in this subclause is referenced in the service description of each
service which supports a sub-function parameter in the functionally addressed request message received from
the client.

Table 5 shows possible communication schemes with functional addressing.

Table 5 — Functionally addressed request message with sub-function parameter
and server response behaviour

Client request message Server capability Server response

Server
case # Addressing

scheme

subFunction
(suppress-

PosRspMsg-
Indication-

Bit)

Service ID
supported

Sub-
function

supported

Data
parameter
supported

(only if
applicable)

Message
Negative:

NRC/
section

Comments on server
response

1 At least 1 PosRsp — Server sends positive
response

2 At least 1 NegRsp NRC=xx

Server sends negative
response because
error occurred reading
the data parameters
of the request
message

3

YES YES

None — Server does NOT
send a response

4 NO — — — Server does NOT
send a response

5

FALSE
(bit = 0)

YES NO —

NoRsp

— Server does NOT
send a response

6 At least 1 NoRsp — Server does NOT
send a response

7 At least 1 NegRsp NRC=xx

Server sends negative
response because
error occurred reading
the data parameters
of the request
message

8

YES YES

None — Server does NOT
send a response

9 NO — — — Server does NOT
send a response

10

functional

TRUE
(bit = 1)

YES NO —

NoRsp

— Server does NOT
send a response

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 25

Description of server response cases on functionally addressed client request messages with subFunction:

1) Server sends a positive response message because the service identifier and sub-function parameter is
supported by the client's request with indication for a response message.

2) Server sends a negative response message (e.g. IMLOIF: incorrectMessageLengthOrIncorrectFormat)
because the service identifier and sub-function parameter is supported by the client's request, but some
other error appeared (e.g. wrong PDU length according to service identifier and sub-function parameter in
the request message) during processing of the sub-function.

3) Server sends no response message because the negative response code ROOR (requestOutOfRange,
which is identified by the server because the service identifier and sub-function parameter are supported
but a required data parameter is not supported by the client's request) is always suppressed in case of a
functionally addressed request message. The suppressPosRspMsgIndicationBit does not matter in such
cases.

4) Server sends no response message because the negative response code SNS (serviceNotSupported,
which is identified by the server because the service identifier is not supported by the client's request) is
always suppressed in case of a functionally addressed request message. The
suppressPosRspMsgIndicationBit does not matter in such cases.

5) Server sends no response message because the negative response code SFNS
(subFunctionNotSupported, which is identified by the server because the service identifier is supported
and the sub-function parameter is not supported by the client's request) is always suppressed in case of a
functionally addressed request. The suppressPosRspMsgIndicationBit does not matter in such cases.

6) Server sends no response message because the service identifier and sub-function parameter is
supported by the client's request with indication for no response message.

NOTE If a negative response code RCRRP (requestCorrectlyReceivedResponsePending) is used, a final response
shall be given independent of the suppressPosRspMsgIndicationBit value.

7) Same effect as in 2) (e.g. a negative response message is sent) because the
suppressPosRspMsgIndicationBit is ignored for any negative response. This is also true if the request
message is functionally addressed.

8) Same effect as in 3) (e.g. no response message is sent) because the negative response code ROOR
(requestOutOfRange, which is identified by the server because the service identifier and sub-function
parameter are supported but a required data parameter is not supported by the client's request) is always
suppressed in case of a functionally addressed request message. The suppressPosRspMsgIndicationBit
does not matter in such a case.

9) Same effect as in 4) (e.g. no response message is sent) because the negative response code SNS
(serviceNotSupported, which is identified by the server because the service identifier is not supported by
the client's request) is always suppressed in case of a functionally addressed request message. The
suppressPosRspMsgIndicationBit does not matter in such a case.

10) Same effect as in 5) (e.g. no response message is sent) because the negative response code SFNS
(subFunctionNotSupported, which is identified by the server because the service identifier is supported
and the sub-function parameter is not supported by the client's request) is always suppressed in case of a
functionally addressed request message. The suppressPosRspMsgIndicationBit does not matter in such
a case.

ISO 14229:2006(E)

26 © ISO 2006 – All rights reserved

7.5.3 Request message without sub-function parameter and server response behaviour

7.5.3.1 Physically addressed client request message

The server response behaviour specified in this subclause is referenced in the service description of each
service which does not support a sub-function parameter but a data parameter in the physically addressed
request message received from the client.

Table 6 shows possible communication schemes with physical addressing.

Table 6 — Physically addressed request message without sub-function parameter and server
response behaviour

Client request message Server capability Server response
Server
case # Addressing

scheme
Service ID
supported

Parameter
supported Message Negative:

NRC/section
Comments on server response

1 ALL — Server sends positive response

2 At least 1
PosRsp

— Server sends positive response

3

At least 1,
more

than 1, or
ALL

NRC=xx

Server sends negative response
because error occurred reading
data parameters of request
message

4

YES

NONE NRC=ROOR Negative response with NRC 31
hex

5

physical

NO —

NegRsp

NRC=SNS Negative response with NRC 11
hex

The following is a description of server response cases on physically addressed client request messages
without sub-function (data parameter follows service identifier).

1) Server sends a positive response message because the service identifier and all data parameters are
supported by the client's request message.

2) Server sends a positive response message because the service identifier and a single data parameter is
supported by the client's request message.

3) Server sends a negative response message (e.g. IMLOIF: incorrectMessageLengthOrIncorrectFormat)
because the service identifier is supported and at least one, more than one or all data parameters are
supported by the client's request message, but some other error occurred (e.g. wrong length of the
request message) during processing of the service.

4) Server sends a negative response message with the negative response code ROOR
(requestOutOfRange) because the service identifier is supported but none of the requested data
parameters are supported by the client's request message.

5) Server sends a negative response message with the negative response code SNS (serviceNotSupported)
because the service identifier is not supported by the client's request message.

7.5.3.2 Functionally addressed client request message

The server response behaviour specified in this subclause is referenced in the service description of each
service which does not support a sub-function parameter but a data parameter in the functionally addressed
request message received from the client.

Table 7 shows possible communication schemes with functional addressing.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 27

Table 7 — Functionally addressed request message without sub-function parameter
and server response behaviour

Client request message Server capability Server response
Server
case # Addressing

scheme
Service ID
supported

Parameter
supported Message Negative:

NRC/section
Comments on server response

1 YES — Server sends positive response

2 at least 1
PosRsp

— Server sends positive response

3
At least 1,

more than 1,
or ALL

NegRsp NRC=xx

Server sends negative response
because error occurred reading
data parameters of request
message

4

YES

NONE — Server does NOT send a
response

5

functional

NO —
NoRsp

— Server does NOT send a
response

The following is a description of server response cases on functionally addressed client request messages
without sub-function (data parameter follows service identifier).

1) Server sends a positive response message because the service identifier and single data parameter is
supported by the client's request message.

2) Server sends a positive response message because the service identifier and at least one data
parameter is supported by the client's request message.

3) Server sends a negative response message (e.g. IMLOIF: incorrectMessageLengthOrIncorrectFormat)
because the service identifier is supported and at least one, more than one or all data parameters are
supported by the client's request message, but some other error occurred (e.g. wrong length of the
request message) during processing of the service.

4) Server sends no response message because the negative response code ROOR (request out of range,
which would occur because the service identifier is supported, but none of the requested data parameters
is supported by the client's request) is always suppressed in case of a functionally addressed request.

5) Server sends no response message because the negative response code SNS (serviceNotSupported,
which is identified by the server because the service identifier is not supported by the client's request) is
always suppressed in case of a functionally addressed request.

7.5.4 Pseudo code example of server response behaviour

The following is a server pseudo code example to describe the logical steps a server shall perform when
receiving a request from the client.

SWITCH (A_PDU.A_Data.A_PCI.SI)
{
CASE Service_with_subFunction: /* test if service with subFunction is supported */

SWITCH (A_PDU.A_Data.A_Data.Parameter1 & 0x7F) /* get subFunction parameter value without bit 7 */
{
CASE subFunction_00: /* test if subFunction parameter value is supported */

IF (message_length == expected_subFunction_message_length) THEN
: /* prepare response message */
responseCode = positiveResponse; /* positive response message; set internal NRC = 0x00 */

ELSE
responseCode = IMLOIF; /* NRC 0x13: incorrectMessageLengthOrInvalidFormat */

ENDIF
BREAK;

ISO 14229:2006(E)

28 © ISO 2006 – All rights reserved

CASE subFunction_01: /* test if subFunction parameter value is supported */
: /* prepare response message */
responseCode = positiveResponse; /* positive response message; set internal NRC = 0x00 */
:
:
:

CASE subFunction_127: /* test if subFunction parameter value is supported */
: /* prepare response message */
responseCode = positiveResponse; /* positive response message; set internal NRC = 0x00 */

BREAK;
DEFAULT:

responseCode = SFNS; /* NRC 0x12: subFunctionNotSupported */
}

suppressPosRspMsgIndicationBit = (A_PDU.A_Data.Parameter1 & 0x80); /* results in either 0x00 or 0x80 */
IF ((suppressPosRspMsgIndicationBit) && (responseCode == positiveResponse)) THEN
 /* test if positive response is required and if responseCode is positive 0x00 */

suppressResponse = TRUE; /* flag to NOT send a positive response message */
ELSE

suppressResponse = FALSE; /* flag to send the response message */
ENDIF
BREAK;

CASE Service_without_subFunction: /* test if service without subFunction is supported */
suppressResponse = FALSE; /* flag to send the response message */
IF (message_length == expected_message_length) THEN

IF (A_PDU.A_Data.Parameter1 == supported) THEN /* test if data parameter following the SID is supported*/
: /* read data and prepare response message */
responseCode = positiveResponse; /* positive response message; set internal NRC = 0x00 */

ELSE
responseCode = ROOR; /* NRC 0x31: requestOutOfRange */

ENDIF
ELSE

responseCode = IMLOIF; /* NRC 0x13: incorrectMessageLengthOrInvalidFormat */
ENDIF
BREAK;

DEFAULT:
responseCode = SNS; /* NRC 0x11: serviceNotSupported */

}
IF (A_PDU.TA_type == functional && ((responseCode == SNS) ¦¦ (responseCode == SFNS) ¦¦ (responseCode == ROOR))) THEN

/* suppress negative response message */
ELSE

IF (suppressResponse == TRUE) THEN
/* suppress positive response message */

ELSE
/* send negative or positive response */

ENDIF
ENDIF

When functional addressing is used for the request message, the negative response message with the
negative response code (NRC) 78 hex, requestCorrectlyReceivedResponsePending (RCRRP), shall not be
implemented if a negative response message with NRC=SNS (serviceNotSupported), NRC=SFNS
(subFunctionNotSupported) or NRC=ROOR (requestOutOfRange) is the result of the PDU analysis of the
received request message.

7.5.5 Multiple concurrent request messages with physical and functional addressing

A common server implementation has only one diagnostic protocol instance available in the server which can
only handle one request at a time. The rule is that any received message (regardless of whether the
addressing mode is physical or functional) occupies this resource until the request message is processed
(with final response sent or application call without response).

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 29

There are only two (2) exceptions which have to be treated separately.

1) The keep-alive logic is used by a client to keep a previously enabled session active in one or multiple
servers. Keep-Alive-Logic is defined as the functionally addressed valid TesterPresent message with
SPRMIB=true and has to be processed by a bypass logic. It is up to the server to make sure that this
specific message can not “block” the server’s application layer and that an immediately following
addressed message can be processed.

2) If a server supports one or more legislated diagnostic requests and one of these requests is received
while a non-legislated service (e.g. enhanced diagnostics) is active, then the active service shall be
aborted, the default session shall be started and the legislated diagnostic service shall be processed. This
requirement does not apply if the programming session is active.

7.5.6 Size of dataIdentifier (DID)

The dataIdentifier (DID) parameter has a size of two (2) bytes in all services throughout ISO 14229.

An implementation standard based on ISO 14229 shall specify the size of the dataIdentifier (DID) parameter if
it does not match this International Standard.

8 Service description conventions

8.1 Service description

This clause defines how each diagnostic service is described in ISO 14229. It defines the general service
description format of each diagnostic service.

This clause gives a brief outline of the functionality of the service. Each diagnostic service specification starts
with a description of the actions performed by the client and the server(s) which are specific to each service.
The description of each service includes a table which lists the parameters of its primitives: request/indication,
response/confirmation for a positive or negative result. All have the same structure.

For a given request/indication and response/confirmation A_PDU definition, the presence of each parameter
is described by one of the following convention (Cvt) values given in Table 8.

Table 8 — A_PDU parameter conventions

Type Name Description

M Mandatory The parameter shall be present in the A_PDU.

C Conditional The parameter can be present in the A_PDU, based on certain criteria (e.g. sub-
function/parameters within the A_PDU).

S Selection Indicates that the parameter is mandatory (unless otherwise specified) and is a selection
from a parameter list.

U User option The parameter may or may not be present, depending on dynamic usage by the user.

NOTE The “<Service Name> Request Service Id” marked as “M” (Mandatory) shall not imply that this service must be supported by
the server. The “M” only indicates the mandatory presence of this parameter in the request A_PDU if the server supports the service.

ISO 14229:2006(E)

30 © ISO 2006 – All rights reserved

8.2 Request message

8.2.1 Request message definition

This subclause includes multiple tables which define the A_PDU (see Clause 7) parameters for the service
request/indication. There might be a separate table for each sub-function parameter ($Level) if the request
messages of the different sub-function parameters ($Level) differ in the structure of the A_Data parameters
and cannot be specified clearly in one table.

Table 9 — Request A_PDU definition with sub-function

A_PDU parameter Parameter name Cvt Hex value Mnemonic

SA Source Address M xx SA

TA Target Address M xx TA

TA_type Target Address type M xx TAT

RA Remote Address C xx RA

A_Data.A_PCI.SI <Service Name> Request Service Id M xx SIDRQ

A_Data.
Parameter 1

sub-function = [
parameter]

S
xx

LEV_
PARAM

Parameter 2
:

Parameter k

data-parameter#1
 :
data-parameter#k-1

U
:
U

xx
:

xx

DP_…#1
:

DP_…#k-1

C: The RA (Remote Address) PDU parameter is only present in case of remote addressing.

Table 10 — Request A_PDU definition without sub-function

A_PDU parameter Parameter name Cvt Hex value Mnemonic

SA Source Address M xx SA

TA Target Address M xx TA

TA_type Target Address type M xx TAT

RA Remote Address C xx RA

A_Data.A_PCI.SI <Service Name> Request Service Id M xx SIDRQ

A_Data.
Parameter 1

:
Parameter k

data-parameter#1
 :
data-parameter#k

U
:
U

xx
:

xx

DP_…#1

:
DP_…#k

C: The RA (Remote Address) PDU parameter is only present in case of remote addressing.

In all requests/indications, the addressing information TA, SA, and TA_type is mandatory. The addressing
information RA may optionally be present.

NOTE The addressing information is shown in the table above for definition purposes. Further service
request/indication definitions only specify the A_Data A_PDU parameter because the A_Data A_PDU parameter
represents the message data bytes of the service request/indication.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 31

8.2.2 Request message sub-function parameter $Level (LEV_) definition

This subclause defines the sub-function $levels (LEV_) parameter(s) defined for the request/indication of the
service <Service Name>.

This subclause does not contain any definition for cases where the described service does not use a sub-
function parameter value and does not utilize the suppressPosRspMsgIndicationBit (this implicitly indicates
that a response is required).

The sub-function parameter byte is divided into two parts (on bit-level) as defined in Table 11.

Table 11 — Sub-function parameter structure

Bit
position Description

suppressPosRspMsgIndicationBit

7

This bit indicates if a positive response message shall be suppressed by the server.

'0' = FALSE, do not suppress a positive response message (a positive response message is required).

'1' = TRUE, suppress response message (a positive response message shall not be sent; the server being
addressed shall not send a positive response message).

Independent of the suppressPosRspMsgIndicationBit, negative response messages are sent by the server(s)
according to the restrictions specified in 7.5.

sub-function parameter value

6-0 The bits 0-6 of the sub-function parameter contain the sub-function parameter value of the service (00 - 7F hex).

Each service utilizing the sub-function parameter byte, but only supporting the
suppressPosRspMsgIndicationBit has to support the zeroSubFunction sub-function parameter value (00 hex).

The sub-function parameter value is a 7-bit value (bits 6-0 of the sub-function parameter byte) that can have
multiple values to further specify the service behaviour.

Each service only supporting the suppressPosRspMsgIndicationBit has to support the zeroSubFunction
(00 hex).

Services supporting sub-function parameter values in addition to the suppressPosRspMsgIndicationBit shall
support the sub-function parameter values as defined in the sub-function parameter value table.

Each service contains a table that defines values for the sub-function parameter values, taking into account
only the bits 0-6.

Table 12 — Request message sub-function parameter definition

Hex
(bit 6-0) Description Cvt Mnemonic

xx sub-function#1 M/U SUBFUNC1

 description of sub-function parameter#1

: : : :

xx sub-function#m M/U SUBFUNCm

 description of sub-function parameter#m

ISO 14229:2006(E)

32 © ISO 2006 – All rights reserved

The convention (Cvt) column in the table above shall be interpreted as follows.

Table 13 — Sub-function parameter conventions

Type Name Description

M Mandatory The sub-function parameter has to be supported by the server if the service is supported.

U User option The sub-function parameter may or may not be supported by the server, depending on the
usage of the service.

The complete sub-function parameter byte value is calculated based on the value of the
suppressPosRspMsgIndicationBit and the sub-function parameter value chosen.

Table 14 — Calculation of the sub-function byte value

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SuppressPosRspMsg-
IndicationBit

Sub-function parameter value as specified in the sub-function
parameter value table of the service

Resulting sub-function parameter byte value (bit 7 - 0)

8.2.3 Request message data parameter definition

This subclause defines the data-parameter(s) $DataParam (DP_) for the request/indication of the service
<Service Name>. This subclause does not contain any definition if the described service does not use any
data parameter. The data parameter portion can contain multiple bytes. This subclause provides a generic
description of each data parameter; detailed definitions can be found in the annexes of this document. The
annexes also specify whether a data parameter shall be supported or is user-optional to be supported if the
server supports the service.

Table 15 — Request message data parameter definition

Definition

data-parameter#1

description of data-parameter#1

 :

data-parameter#n

description of data-parameter#n

8.3 Positive response message

8.3.1 Positive response message definition

This section includes multiple tables that define the A_PDU parameters for the service response/confirmation
(see Clause 7 for a detailed description of the application layer protocol data unit A_PDU). There might be a
separate table for each sub-function parameter $Level when the response messages of the different sub-
function parameters $Level differ in the structure of the A_Data parameters.

The positive response message of a diagnostic service (if required) shall be sent after the execution of the
diagnostic service. If a diagnostic service requires different handling (e.g. ECUReset service), the appropriate

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 33

description when to sent the positive response message can be found in the service description of the
diagnostic service.

Table 16 — Positive response A_PDU

A_PDU parameter Parameter name Cvt Hex value Mnemonic

SA Source Address M xx SA

TA Target Address M xx TA

TA_type Target Address type M xx TAT

RA Remote Address C xx RA

A_Data.A_PCI.SI <Service Name> Response Service Id S xx SIDPR

A_Data.Parameter 1
:

A_Data.Parameter n

data-parameter#1
 :
data-parameter#n

U
xx
:

xx

DP_…#1
:

DP_…#n

C: The RA (Remote Address) PDU parameter is only present in case of remote addressing.

In all responses/confirmations, the addressing information TA, SA, and TA_type is mandatory. The addressing
information RA is used if and only if remote addressing is used.

NOTE The addressing information is shown in Table 16 for definition purposes. Further service request/indication
definitions only specify the A_Data A_PDU parameter because the A_Data A_PDU parameter represents the message
data bytes of the service response/confirmation.

8.3.2 Positive response message data parameter definition

This subclause defines the data parameter(s) for the response/confirmation of the service <Service Name>. It
does not contain any definition if the described service does not use any data parameter. The data parameter
portion can contain multiple bytes. This subclause provides a generic description of each data parameter.
Detailed definitions can be found in the annexes of this document. The annexes also specify whether a data
parameter will be supported or is user-optional to be supported if the server supports the service.

Table 17 — Response data parameter definition

Definition

data-parameter#1

description of data-parameter#1. If the request supports a sub-function parameter byte then this parameter is an echo of
the 7-bit sub-function parameter value contained within the sub-function parameter byte from the request message with
bit 7 set to zero. The suppressPosRspMsgIndicationBit from the sub-function parameter byte is not echoed.

data-parameter#m

description of data-parameter#m

ISO 14229:2006(E)

34 © ISO 2006 – All rights reserved

8.4 Supported negative response codes (NRC_)

This subclause defines the negative response codes that will be implemented for this service. The
circumstances under which each response code would occur are documented in Tables 18 and 19. The
definition of the negative response message can be found in section 7.4. The server shall use the negative
response A_PDU for the indication of an identified error condition.

The negative response codes listed in A.1 shall be used in addition to the negative response codes specified
in each service description if applicable. Details can be found in A.1.

Table 18 — Supported negative response codes

Hex Description Cvt Mnemonic

xx NegativeResponseCode#1 M NRC_

 1. condition#1

 :

m. condition #m

: : U NRC_

xx NegativeResponseCode#n U NRC_

 1. condition#1

 :

k. condition #k

The convention (Cvt) column in Table 18 shall be interpreted as follows:

Table 19 — Sub-function parameter conventions

Type Name Description

M Mandatory The negative response code shall be supported by the server if the service is supported.

U User option The negative response code may or may not be supported by the server, depending on the
usage of the service.

8.5 Message flow examples

This subclause contains message flow examples for the service <Service Name>. All examples are shown on
a message level (without addressing information).

Table 20 — Request message flow example

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 (A_PCI) <Service Name> request Service Id xx SIDRQ

#2 sub-function/data-parameter#1 xx LEV_/DP_

: : xx DP_

#n data-parameter#m xx DP_

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 35

Table 21 — Positive response message flow example

Message direction: server → client

Message type: Response

A_Data Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 (A_PCI) <Service Name> response Service Id xx SIDPR

#2 data-parameter#1 xx DP_

: : : :

#n data-parameter#n-1 xx DP_

There might be multiple examples applicable to the service <Service Name> (e.g. one for each sub-function
parameter $Level).

Table 22 shows a message flow example for a negative response message.

Table 22 — Negative response message flow example

Message direction: server → client

Message type: Response

A_Data Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 (A_PCI.NR_SI) Negative Response Service Id 7F SIDRSIDNRQ

#2 (A_PCI.SI) <Service Name> request Service Id xx SIDRQ

#3 responseCode xx NRC_

ISO 14229:2006(E)

36 © ISO 2006 – All rights reserved

9 Diagnostic and communication management functional unit

9.1 Overview

Table 23 — Diagnostic and communication management functional unit

Service Description

DiagnosticSessionControl The client requests to control a diagnostic session with a server(s).

ECUReset The client forces the server(s) to perform a reset.

SecurityAccess The client requests to unlock a secured server(s).

CommunicationControl The client requests the server to control its communication.

TesterPresent The client indicates to the server(s) that it is still present.

AccessTimingParameter The client uses this service to read/modify the timing parameters for an active
communication.

SecuredDataTransmission The client uses this service to perform data transmission with an extended data link
security.

ControlDTCSetting The client controls the setting of DTCs in the server.

ResponseOnEvent The client requests to start an event mechanism in the server.

LinkControl The client requests control of the communication baud rate.

9.2 DiagnosticSessionControl (10 hex) service

9.2.1 Service description

The DiagnosticSessionControl service is used to enable different diagnostic sessions in the server(s).

A diagnostic session enables a specific set of diagnostic services and/or functionality in the server(s). It can,
furthermore, enable a data link layer dependent set of timing parameters applicable for the started session.
This service provides the capability that the server(s) can report data link layer specific parameter values valid
for the enabled diagnostic session (e.g. timing parameter values). The data link layer specific implementation
document defines the structure and content of the optional parameter record contained in the response
message of this service. The user of this International Standard shall define the exact set of services and/or
functionality enabled in each diagnostic session (superset of functionality that is available in the
defaultSession).

There shall always be exactly one diagnostic session active in a server. A server shall always start the default
diagnostic session when powered up. If no other diagnostic session is started, then the default diagnostic
session shall be running as long as the server is powered.

A server shall be capable of providing diagnostic functionality under normal operating conditions and in other
operating conditions defined by the vehicle manufacturer, e.g. limp home operation condition.

If the client has requested a diagnostic session which is already running, then the server shall send a positive
response message and behave as shown in Figure 9, which describes the server internal behaviour when
transitioning between sessions.

Whenever the client requests a new diagnostic session, the server shall send the DiagnosticSessionControl
positive response message before the timings of the new session become active in the server. Some
situations may require that the new session must be entered before the positive response is sent while
maintaining the old protocol timings for sending the response. If the server is not able to start the requested
new diagnostic session, then it shall respond with a DiagnosticSessionControl negative response message
and the current session shall continue (see diagnosticSession parameter definitions for further information on

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 37

how the server and client shall behave). There shall be only one session active at a time. A diagnostic session
enables a specific set of diagnostic services and functions, which shall be defined by the vehicle manufacturer.
The set of diagnostic services and diagnostic functionality in a non-default diagnostic session (excluding the
programmingSession) is a superset of the functionality provided in the defaultSession, which means that the
diagnostic functionality of the defaultSession is also available when switching to any non-default diagnostic
session. A session can enable vehicle-manufacturer-specific services and functions which are not part of
ISO 14229.

To start a new diagnostic session, a server may request that certain conditions be fulfilled. All such conditions
are user-defined. An example of such a condition is the following.

⎯ The server may only allow a client with a certain client identifier (client diagnostic address) to start a
specific new diagnostic session (e.g. a server may require that only a client having the client identifier
F4 hex may start the extendedDiagnosticSession).

⎯ In some systems, it is desirable to change communication-timing parameters when a new diagnostic
session is started. The DiagnosticSessionControl service entity can use the appropriate service primitives
to change the timing parameters as specified for the underlying layers to change communication timing in
the local node and potentially in the nodes the client wants to communicate with.

Figure 9 provides an overview about the diagnostic session transition and what the server will do when it
transitions to another session.

Key

1 default session
2 other session
3 same or other session
4 default session

Figure 9 — Server diagnostic session state diagram

The following is a description of diagnostic session transition:

1) When the server is in the defaultSession and the client requests to start the defaultSession, then the
server shall re-initialize the defaultSession completely. The server shall reset all
activated/initiated/changed settings/controls during the activated session. This does not include long-term
changes programmed into non-volatile memory.

2) When the server transitions from the defaultSession to any other session than the defaultSession, then
the server shall only reset the events that have been configured in the server via the ResponseOnEvent
(86 hex) service during the defaultSession.

3) When the server transitions from any diagnostic session other than the defaultSession to another session
other than the defaultSession (including the currently active diagnostic session), then the server shall
(re-) initialize the diagnostic session, which means that each event that has been configured in the server
via the ResponseOnEvent (86 hex) service shall be reset and that security shall be enabled. Any

ISO 14229:2006(E)

38 © ISO 2006 – All rights reserved

configured periodic scheduler shall remain active when transitioning from one non-defaultSession to
another or the same non-defaultSession. The states of the CommunicationControl and ControlDTCSetting
services shall not be affected, which means, for example, that normal communication shall remain
disabled when it is disabled at the point in time at which the session is switched.

4) When the server transitions from any diagnostic session other than the defaultSession to the
defaultSession, then the server shall reset each event that has been configured in the server via the
ResponseOnEvent (86 hex) service and security shall be enabled. Any configured periodic scheduler shall
be disabled. Furthermore, the states of the CommunicationControl and ControlDTCSetting services shall
be reset, which means, for example, that normal communication shall be re-enabled when it was disabled
at the point in time the session is switched to the defaultSession. The server shall reset all
activated/initiated/changed settings/controls during the activated session. This does not include long-term
changes programmed into non-volatile memory.

Table 24 shows the services which are allowed during the defaultSession and the non-defaultSession (timed
services). Any non-defaultSession is tied to a diagnostic session timer that has to be kept active by the client.

Table 24 — Services allowed during default and non-default diagnostic sessions

Service defaultSession non-defaultSession

DiagnosticSessionControl - 10 hex x x
ECUReset - 11 hex x x
SecurityAccess - 27 hex N/A x
CommunicationControl - 28 hex N/A x
TesterPresent - 3E hex x x
AccessTimingParameter - 83 hex N/A x
SecuredDataTransmission - 84 hex N/A
ControlDTCSetting - 85 hex N/A x
ResponseOnEvent - 86 hex x a x
LinkControl - 87 hex N/A x
ReadDataByIdentifier - 22 hex x b x
ReadMemoryByAddress - 23 hex x c x
ReadScalingDataByIdentifier - 24 hex x b x
ReadDataByPeriodicIdentifier - 2A hex N/A x
DynamicallyDefineDataIdentifier - 2C hex x d x
WriteDataByIdentifier - 2E hex x b x
WriteMemoryByAddress - 3D hex x c x
ClearDiagnosticInformation - 14 hex x x
ReadDTCInformation - 19 hex x x
InputOutputControlByIdentifier - 2F hex N/A x
RoutineControl - 31 hex x e x
RequestDownload - 34 hex N/A x
RequestUpload - 35 hex N/A x
TransferData - 36 hex N/A x
RequestTransferExit - 37 hex N/A x
a It is implementation-specific whether the ResponseOnEvent service is also allowed during the defaultSession.
b Secured dataIdentifiers require a SecurityAccess service and therefore a non-default diagnostic session.
c Secured memory areas require a SecurityAccess service and therefore a non-default diagnostic session.
d A dataIdentifier can be defined dynamically in the default and non-default diagnostic session.
e Secured routines require a SecurityAccess service and therefore a non-default diagnostic session. A routine that needs to be
stopped actively by the client also requires a non-default session.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 39

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.2 in the event that those addressing methods are implemented for this service.

9.2.2 Request message

9.2.2.1 Request message definition

Table 25 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 DiagnosticSessionControl Request Service Id M 10 DSC

#2 sub-function = [
diagnosticSessionType]

M 00-FF LEV_
DS_

9.2.2.2 Request message sub-function parameter $Level (LEV_) definition

The sub-function parameter diagnosticSessionType is used by the DiagnosticSessionControl service to select
the specific behaviour of the server. Explanations and usage of the possible diagnostic sessions are detailed
below. The following sub-function values are specified [suppressPosRspMsgIndicationBit (bit 7) not shown]:

Table 26 — Request message sub-function parameter definition

Hex
(bit 6-0) Description Cvt Mnemonic

00 ISOSAEReserved M ISOSAERESRVD

 This value is reserved by ISO 14229.

01 defaultSession M DS

 This diagnostic session enables the default diagnostic session in the server(s) and
does not support any diagnostic application timeout handling provisions (e.g. no
TesterPresent service is necessary to keep the session active).

If any other session than the defaultSession has been active in the server and the
defaultSession is once again started, then the following implementation rules shall
be followed (see also Figure 9).
⎯ The server shall stop the current diagnostic session when it has sent the

DiagnosticSessionControl positive response message and shall start the
newly requested diagnostic session afterwards.

⎯ If the server has sent a DiagnosticSessionControl positive response message,
it shall have re-locked the server if the client unlocked it during the diagnostic
session.

⎯ If the server sends a negative response message with the
DiagnosticSessionControl request service identifier, the active session shall
be continued.

If the used data link requires an initialization step, then the initialized server(s) shall
start the default diagnostic session by default. No DiagnosticSessionControl with
diagnosticSession set to defaultSession shall be required after the initialization
step.

ISO 14229:2006(E)

40 © ISO 2006 – All rights reserved

Table 26 (continued)

Hex
(bit 6-0) Description Cvt Mnemonic

02 programmingSession U PRGS

 This diagnosticSession enables all diagnostic services required to support the
memory programming of a server.

If the server runs the programmingSession in the boot software, the
programmingSession shall only be left via an ECUReset (11 hex) service initiated
by the client, a DiagnosticSessionControl (10 hex) service with sessionType equal
to defaultSession, or a session layer timeout in the server.

If the server runs in the boot software when it receives the
DiagnosticSessionControl (10 hex) service with sessionType equal to
defaultSession, or a session layer timeout occurs and a valid application software
is present for both cases, then the server shall restart the application software.
ISO 14229 does not specify the various implementation methods of how to achieve
the restart of the valid application software (e.g. a valid application software can be
determined directly in the boot software, during the ECU startup phase when
performing an ECUReset, etc.).

03 extendedDiagnosticSession U EXTDS

 This diagnosticSession can e.g. be used to enable all diagnostic services required
to support the adjustment of functions such as “Idle Speed”, “CO Value”, etc. in the
server's memory. It can also be used to enable diagnostic services, which are not
specifically tied to the adjustment of functions.

04 safetySystemDiagnosticSession U SSDS

 This diagnosticSession enables all diagnostic services required to support safety-
system-related functions e.g. airbag deployment.

05 - 3F ISOSAEReserved M ISOSAERESRVD

 This value is reserved by ISO 14229 for future definition.

40 - 5F vehicleManufacturerSpecific U VMS

 This range of values is reserved for vehicle-manufacturer-specific use.

60 - 7E systemSupplierSpecific U SSS

 This range of values is reserved for system-supplier-specific use.

7F ISOSAEReserved M ISOSAERESRVD

 This value is reserved by ISO 14229 for future definition.

9.2.2.3 Request message data parameter definition

This service does not support data parameters in the request message.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 41

9.2.3 Positive response message

9.2.3.1 Positive response message definition

Table 27 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 DiagnosticSessionControl Response Service Id S 50 DSCPR

#2 diagnosticSessionType M 00-7F DS_

#3
:

#n

sessionParameterRecord[] #1 = [
data#1
:
data#m]

Ca
:
C

00-FF

:
00-FF

SPREC_
DATA_1

:
DATA_m

a C is the presence, structure and content of the sessionParameterRecord and is data-link-layer-dependant and therefore defined in
the implementation specification(s) of ISO 14229.

9.2.3.2 Positive response message data parameter definition

Table 28 — Response message data parameter definition

Definition

diagnosticSessionType

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message.

sessionParameterRecord

This parameter record contains session-specific parameter values reported by the server. The content and structure of
this parameter record is data-link-layer-specific and can be found in the implementation specification(s) of ISO 14229.

9.2.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code occurs are documented in Table 29.

Table 29 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS

 Send if the sub-function parameter in the request message is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect M CNC

 This code shall be returned if the criteria for the request DiagnosticSessionControl
are not met.

ISO 14229:2006(E)

42 © ISO 2006 – All rights reserved

9.2.5 Message flow example(s) DiagnosticSessionControl

9.2.5.1 Example #1 — Start programmingSession

This message flow shows how to enable the diagnostic session “programmingSession” in a server. The client
requests a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-function
parameter) to “FALSE” (‘0’). For the given example, it is assumed that the sessionParameterRecord is
supported for the data link layer for which the service is implemented.

Table 30 — DiagnosticSessionControl request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DiagnosticSessionControl request SID 10 DSC

#2 diagnosticSessionType = programmingSession,
suppressPosRspMsgIndicationBit = FALSE

02 DS_ECUPRGS

Table 31 — DiagnosticSessionControl positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DiagnosticSessionControl response SID 50 DSCPR

#2 diagnosticSessionType = programmingSession 02 DS_ECUPRGS

9.3 ECUReset (11 hex) service

9.3.1 Service description

The ECUReset service is used by the client to request a server reset.

This service requests the server to effectively perform a server reset based on the content of the resetType
parameter value embedded in the ECUReset request message. The ECUReset positive response message (if
required) shall be sent before the reset is executed in the server(s). After a successful server reset, the server
shall activate the defaultSession.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.2 in the event that those addressing methods are implemented for this service.

9.3.2 Request message

9.3.2.1 Request message definition

Table 32 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ECUReset Request Service Id M 11 ER

#2 sub-function = [
resetType]

M
00-FF

LEV_
RT_

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 43

9.3.2.2 Request message sub-function Parameter $Level (LEV_) definition

The sub-function parameter resetType used by the ECUReset request message to describe how the server
will perform the reset [suppressPosRspMsgIndicationBit (bit 7) is not shown].

Table 33 — Request message sub-function parameter definition

Hex
(bit 6-0) Description Cvt Mnemonic

00 ISOSAEReserved M ISOSAERESRVD
 This value is reserved by ISO 14229.

01 hardReset U HR
 This value identifies a “hard reset” condition which simulates the power-on/start-up

sequence typically performed after a server has been previously disconnected from
its power supply (i.e. battery). The performed action is implementation specific and
not defined by ISO 14229. It might result in the re-initialization of both volatile
memory and non-volatile memory locations to predetermined values.

02 keyOffOnReset U KOFFONR
 This value identifies a condition similar to the driver turning the ignition key off and

back on. This reset condition should simulate a key-off-on sequence (i.e.
interrupting the switched power supply). The performed action is implementation
specific and not defined by ISO 14229. Typically, the values of non-volatile memory
locations are preserved; volatile memory will be initialized.

03 softReset U SR
 This value identifies a “soft reset” condition, which causes the server to immediately

restart the application program if applicable. The performed action is
implementation specific and not defined by ISO 14229. A typical action is to restart
the application without re-initializing of previously learned configuration data,
adaptive factors and other long-term adjustments.

04 enableRapidPowerShutDown U ERPSD
 This value requests the server to enable and perform a “rapid power shut down”

function. The server shall execute the function immediately after “key/ignition” is
switched off. While the server executes the power down function, it shall transition
either directly or after a defined stand-by time to sleep mode. If the client requires a
response message and the server is already prepared to execute the “rapid power
shut down” function, the server shall send the positive response message prior to
the start of the “rapid power shut down” function. The next occurrence of a “key on”
or “ignition on” signal terminates the “rapid power shut down” function.
The client shall not send any request messages other than the ECUReset with the
sub-function disableRapidPowerShutDown in order to not disturb the rapid power
shut down function.
NOTE This sub-function is only applicable to a server supporting a stand-by mode!

05 disableRapidPowerShutDown U DRPSD
 This value requests the server to disable the previously enabled “rapid power shut

down” function.

06 - 3F ISOSAEReserved M ISOSAERESRVD
 This range of values is reserved by ISO 14229 for future definition.

40 - 5F vehicleManufacturerSpecific U VMS
 This range of values is reserved for vehicle-manufacturer-specific use.

60 - 7E systemSupplierSpecific U SSS
 This range of values is reserved for system-supplier-specific use.

7F ISOSAEReserved M ISOSAERESRVD
 This value is reserved by ISO 14229 for future definition.

ISO 14229:2006(E)

44 © ISO 2006 – All rights reserved

9.3.2.3 Request message data parameter definition

This service does not support data parameters in the request message.

9.3.3 Positive response message

9.3.3.1 Positive response message definition

Table 34 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ECUReset Response Service Id S 51 ERPR

#2 resetType M 00-7F RT_

#3 powerDownTime Ca 00-FF PDT

a C: This parameter is present if the sub-function parameter is set to the enableRapidPowerShutDown value (04hex).

9.3.3.2 Positive response message data parameter definition

Table 35 — Response message data parameter definition

Definition

resetType

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message.

powerDownTime

This parameter indicates to the client the minimum time of the stand-by sequence the server will remain in the
power-down sequence.

The resolution of this parameter is one (1) second per count.

The following values are valid:
⎯ 00 – FE hex: 0 – 254 s powerDownTime;
⎯ FF hex: indicates a failure or time not available.

9.3.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 36.

Table 36 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS

 Send if the sub-function parameter in the request message is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect M CNC

 This code shall be returned if the criteria for the ECUReset request is not met.

33 securityAccessDenied M SAD

 This code shall be sent if the requested reset is secured and the server is not in an
unlocked state.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 45

9.3.5 Message flow example ECUReset

This subclause specifies the conditions for the example to be fulfilled to successfully perform an ECUReset
service in the server.

If the condition of server is ignition = on, the system shall not be in an operational mode (e.g. if the system is
an engine management, the engine shall be off).

The client requests a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-
function parameter) to ‘FALSE’.

The server shall send an ECUReset positive response message before the server performs the resetType.

Table 37 — ECUReset request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ECUReset request SID 11 ER

#2 ResetType = hardReset,
suppressPosRspMsgIndicationBit = FALSE

01 RT_HR

Table 38 — ECUReset positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ECUReset response SID 51 ERPR

#2 resetType = hardReset 01 RT_HR

9.4 SecurityAccess (27 hex) service

9.4.1 Service description

The purpose of this service is to provide a means to access data and/or diagnostic services which have
restricted access for security, emissions or safety reasons. Diagnostic services for downloading/uploading
routines or data into a server and reading specific memory locations from a server are situations where
security access may be required. Improper routines or data downloaded into a server could potentially
damage the electronics or other vehicle components or risk the vehicle’s compliance to emissions, safety or
security standards. The security concept uses a seed and key relationship.

A typical example of the use of this service is as follows:

⎯ client requests the “seed”;

⎯ server sends the “seed”;

⎯ client sends the “key” (appropriate for the Seed received);

⎯ server responds that the “key” was valid and that it will unlock itself.

ISO 14229:2006(E)

46 © ISO 2006 – All rights reserved

A vehicle-manufacturer-specific time delay may be required before the server can positively respond to a
service SecurityAccess “requestSeed” message from the client after server power up/reset and after a certain
number of false access attempts (see further description below). If this delay timer is supported, then the
delay shall be activated after a vehicle-manufacturer-specified number of false access attempts has been
reached or when the server is powered up/reset and a previously performed SecurityAccess service has failed
due to a single false access attempt. If the server supports this delay timer, then after a successful
SecurityAccess service “sendKey” execution the server internal indication information for a delay timer
invocation on a power up/reset shall be cleared by the server. If the server supports this delay timer, and
cannot determine if a previously performed SecurityAccess service prior to the power up/reset has failed, then
the delay timer shall always be active after power up/reset. The delay is only required if the server is locked
when powered up/reset. The vehicle manufacturer shall select if the delay timer is supported.

The client shall request the server to “unlock” by sending the service SecurityAccess “requestSeed” message.
The server shall respond by sending a “seed” using the service SecurityAccess “requestSeed” positive
response message. The client shall then respond by returning a “key” number back to the server using the
appropriate service SecurityAccess “sendKey” request message. The server shall compare this “key” to one
internally stored/calculated. If the two numbers match, then the server shall enable (“unlock”) the client’s
access to specific services/data and indicate that with the service SecurityAccess “sendKey” positive
response message. If the two numbers do not match, this shall be considered a false access attempt. If
access is rejected for any other reason, it shall not be considered a false access attempt. An invalid key
requires the client to start over from the beginning with a SecurityAccess “requestSeed” message.

If a server supports security, but the requested security level is already unlocked when a SecurityAccess
“requestSeed” message is received, that server shall respond with a SecurityAccess “requestSeed” positive
response message service with a seed value equal to zero (0). The server shall never send an all zero seed
for a given security level that is currently locked. The client shall use this method to determine if a server is
locked for a particular security level by checking for a non-zero seed.

There shall always be a fixed relationship for each level of security supported so that the sendKey
sub-function parameter value used for any given security level shall be equal to the requestSeed sub-function
parameter value used for that security level plus one.

Only one security level shall be active at any instant of time. For example, if the security level associated with
requestSeed 03 hex is active, and a tester request is successful in unlocking the security level associated with
requestSeed 01 hex, then only the secured functionality supported by the security level associated with
requestSeed 01 hex shall be unlocked at that time. Any additional secured functionality that was previously
unlocked by the security level associated with requestSeed 03 hex shall no longer be active. The security
levels numbering is arbitrary and does not imply any relationship between the levels.

Attempts to access security shall not prevent normal vehicle communications or other diagnostic
communication.

Servers which provide security shall support reject messages if a secure service is requested while the server
is locked.

Some diagnostic functions/services requested during a specific diagnostic session may require a successful
security access sequence. In such a case, the following sequence of services shall be required:

⎯ DiagnosticSessionControl service;

⎯ SecurityAccess service;

⎯ secured diagnostic service.

There are different accessModes allowed for an enabled diagnosticSession (session started) in the server.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.2 in the event that those addressing methods are implemented for this service.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 47

9.4.2 Request message

9.4.2.1 Request message definition

Table 39 — Request message definition — sub-function = requestSeed

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 SecurityAcces Request Service Id M 27 SA

#2 sub-function = [
securityAccessType = requestSeed]

M
01, 03, 05,

07-7D

LEV_
SAT_RSD

#3
:

#n

securityAccessDataRecord[] = [
parameter#1
:
parameter#m]

U
:
U

00-FF

:
00-FF

SECACCDR_
PARA1

:
PARAm

Table 40 — Request message definition — sub-function = sendKey

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 SecurityAcces Request Service Id M 27 SA

#2 sub-function = [
securityAccessType = sendKey]

M
02, 04, 06,

08-7E

LEV_
SAT_SK

#3
:

#n

securityKey[] = [
key#1 (high byte)
:
key#m (low byte)]

M
:
U

00-FF

:
00-FF

SECKEY_
KEY1HB

:
KEYmLB

9.4.2.2 Request message sub-function parameter $Level (LEV_) definition

The sub-function parameter securityAccessType indicates to the server the step in progress for this service,
the level of security the client wants to access and the format of seed and key. If a server supports different
levels of security each level shall be identified by the requestSeed value, which has a fixed relationship to the
sendKey value.

EXAMPLES:

⎯ “requestSeed=01 hex” identifies a fixed relationship between “requestSeed=01 hex” and “sendKey=02 hex”;

⎯ “requestSeed=03 hex” identifies a fixed relationship between “requestSeed=03 hex” and “sendKey=04 hex”.

Values are defined in Table 41 for requestSeed and sendKey [suppressPosRspMsgIndicationBit (bit 7) not
shown].

ISO 14229:2006(E)

48 © ISO 2006 – All rights reserved

Table 41 — Request message sub-function parameter definition

Hex
(bit 6-0) Description Cvt Mnemonic

00 ISOSAEReserved M ISOSAERESRVD

 This value is reserved by ISO 14229.

01 requestSeed U RSD

 RequestSeed with the level of security defined by the vehicle manufacturer.

02 sendKey U SK

 SendKey with the level of security defined by the vehicle manufacturer.

requestSeed U RSD 03, 05,
07-41

RequestSeed with different levels of security defined by the vehicle manufacturer.

sendKey U SK 04, 06,
08-42

SendKey with different levels of security defined by the vehicle manufacturer.

43-5D ISOSAEReserved requestSeed values M RSD

 RequestSeed with different levels of security defined by ISO airbag deployment
implementation standard.

44-5E ISOSAEReserved sendKey values M SK

 SendKey with different levels of security defined by ISO airbag deployment
implementation standard.

5F requestSeed value M RSD

 RequestSeed security level defined in ISO Road vehicles — End of life activation of
on-board pyrotechnic devices — Part 2: Communication requirements standard.

44-60 sendKey value M SK

 SendKey security level defined in ISO Road vehicles — End of life activation of
on-board pyrotechnic devices — Part 2: Communication requirements standard.

61 - 7E systemSupplierSpecific U SSS

 This range of values is reserved for system-supplier-specific use.

7F ISOSAEReserved M ISOSAERESRVD

 This value is reserved by ISO 14229 for future definition.

9.4.2.3 Request message data parameter definition

The following data parameters are defined for this service:

Table 42 — Request message data parameter definition

Definition

securityKey (high and low bytes)

The “key” parameter in the request message is the value generated by the security algorithm corresponding to a specific
“seed” value.

securityAccessDataRecord

This parameter record is user optionally to transmit data to a server when requesting the seed information. It can e.g.
contain identification of the client that is verified in the server.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 49

9.4.3 Positive response message

9.4.3.1 Positive response message definition

Table 43 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 SecurityAccess Response Service Id S 67 SAPR

#2 securityAccessType M 00-7F SAT_

#3
:

#n

securitySeed[] = [
seed#1 (high byte)
:
seed#m (low byte)]

Ca
:
C

00-FF

:
00-FF

SECSEED_
SEED1HB

:
SEEDmLB

a C: The presence of this parameter depends on the securityAccessType parameter. It is mandatory that it be present if the
securityAccessType parameter indicates that the client wants to retrieve the seed from the server.

9.4.3.2 Positive response message data parameter definition

Table 44 — Response message data parameter definition

Definition

securityAccessType

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message.

securitySeed (high and low bytes)

The seed parameter is a data value sent by the server and is used by the client when calculating the key needed to
access security. The securitySeed data bytes are only present in the response message if the request message was
sent with the sub-function set to a value which requests the seed of the server.

ISO 14229:2006(E)

50 © ISO 2006 – All rights reserved

9.4.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 45.

Table 45 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS

 Send if the sub-function parameter in the request message is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect M CNC

 This code shall be returned if the criteria for the request SecurityAccess are not met.

24 requestSequenceError M RSE

 Send if the “sendKey” sub-function is received without first receiving a “requestSeed”
request message.

31 requestOutOfRange M ROOR

 This code shall be sent if the user-optional securityAccessDataRecord contains
invalid data.

35 invalidKey M IK

 Send if an expected “sendKey” sub-function value is received and the value of the
key does not match the server's internally stored/calculated key.

36 exceededNumberOfAttempts M ENOA

 Send if the delay timer is active due to exceeding the maximum number of allowed
false access attempts.

37 requiredTimeDelayNotExpired M RTDNE

 Send if the delay timer is active and a request is transmitted.

9.4.5 Message flow example(s) SecurityAccess

9.4.5.1 Assumptions

For the message flow examples given below, the following conditions shall be fulfilled to successfully unlock
the server if it is in a “locked” state:

⎯ sub-function to request the seed: 01 hex (requestSeed);

⎯ sub-function to send the key: 02 hex (sendKey);

⎯ seed of the server (2 bytes): 3657 hex;

⎯ key of the server (2 bytes): C9A9 hex (e.g. 2’s complement of the seed value).

The client requests a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-
function parameter) to “FALSE” (‘0’).

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 51

9.4.5.2 Example #1 — server is in a “locked” state

9.4.5.2.1 Step #1: Request the seed

Table 46 — SecurityAccess request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 SecurityAccess request SID 27 SA

#2 SecurityAccessType = requestSeed,
suppressPosRspMsgIndicationBit = FALSE

01 SAT_RSD

Table 47 — SecurityAccess positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 SecurityAccess response SID 67 SAPR

#2 securityAccessType = requestSeed 01 SAT_RSD

#3 securitySeed [byte#1] = seed #1 (high byte) 36 SECHB

#4 securitySeed [byte#2] = seed #2 (low byte) 57 SECLB

9.4.5.2.2 Step #2: Send the Key

Table 48 — SecurityAccess request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 SecurityAccess request SID 27 SA

#2 securityAccessType = sendKey,
suppressPosRspMsgIndicationBit = FALSE

02 SAT_SK

#3 securityKey [byte#1] = key #1 (high byte) C9 SECKEY_HB

#4 securityKey [byte#2] = key #2 (low byte) A9 SECKEY_LB

Table 49 — SecurityAccess positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 SecurityAccess response SID 67 SAPR

#2 securityAccessType = sendKey 02 SAT_SK

ISO 14229:2006(E)

52 © ISO 2006 – All rights reserved

9.4.5.3 Example #2 — server is in an “unlocked” state

9.4.5.3.1 Step #1: Request the seed

Table 50 — SecurityAccess request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 SecurityAccess request SID 27 SA

#2 securityAccessType = requestSeed,
suppressPosRspMsgIndicationBit = FALSE

01 SAT_RSD

Table 51 — SecurityAccess positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 SecurityAccess response SID 67 SAPR

#2 securityAccessType = requestSeed 01 SAT_RSD

#3 securitySeed [byte#1] = seed #1 (high byte) 00 SECHB

#4 securitySeed [byte#2] = seed #2 (low byte) 00 SECLB

9.5 CommunicationControl (28 hex) service

9.5.1 Service description

The purpose of this service is to switch on/off the transmission and/or the reception of certain messages of (a)
server(s) (e.g. application communication messages).

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.2 in the event that those addressing methods are implemented for this service.

9.5.2 Request message

9.5.2.1 Request message definition

Table 52 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 CommunicationControl Request Service Id M 28 CC

#2 sub-function = [
controlType]

M
00-FF

LEV_
CTRLTP

#3 communicationType M 00-FF CTP

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 53

9.5.2.2 Request message sub-function parameter $Level (LEV_) definition

The sub-function parameter controlType contains information on how the server shall modify the
communication type referenced in the communicationType parameter [suppressPosRspMsgIndicationBit
(bit 7) not shown in Table 53].

Table 53 — Request message sub-function parameter definition

Hex
(bit 6-0) Description Cvt Mnemonic

00 enableRxAndTx U ERXTX

 This value indicates that the reception and transmission of messages shall be
enabled for the specified communicationType.

01 enableRxAndDisableTx U ERXDTX

 This value indicates that the reception of messages shall be enabled and the
transmission shall be disabled for the specified communicationType.

02 disableRxAndEnableTx U DRXETX

 This value indicates that the reception of messages shall be disabled and the
transmission shall be enabled for the specified communicationType.

03 disableRxAndTx U DRXTX

 This value indicates that the reception and transmission of messages shall be
disabled for the specified communicationType.

04 - 3F ISOSAEReserved U ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

40 - 5F vehicleManufacturerSpecific U VMS

 This range of values is reserved for vehicle-manufacturer-specific use.

60 - 7E systemSupplierSpecific U SSS

 This range of values is reserved for system-supplier-specific use.

7F ISOSAEReserved M ISOSAERESRVD

 This value is reserved by ISO 14229 for future definition.

9.5.2.3 Request message data parameter definition

The following data-parameters are defined for this service:

Table 54 — Request message data parameter definition

communicationType

This parameter is used to reference the kind of communication to be controlled. The communicationType parameter is a
bit-code value which allows control of multiple communication types at the same time (see B.1 for the coding of the
communicationType data parameter).

ISO 14229:2006(E)

54 © ISO 2006 – All rights reserved

9.5.3 Positive response message

9.5.3.1 Positive response message definition

Table 55 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 CommunicationControl Response Service Id S 68 CCPR

#2 controlType M 00-7F CTRLTP

9.5.3.2 Positive response message data parameter definition

Table 56 — Response message data parameter definition

Definition

controlType

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message.

9.5.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 57.

Table 57 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS

 Send if the sub-function parameter in the request message is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect M CNC

 Used when the server is in a critical normal mode activity and therefore cannot
disable/enable the requested communication type.

31 requestOutOfRange M ROOR

 The server shall use this response code if it detects an error in the
communicationType parameter.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 55

9.5.5 Message flow example CommunicationControl (disable transmission of network management
messages)

The client requests a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-
function parameter) to “FALSE” (‘0’).

Table 58 — CommunicationControl request message flow example

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 CommunicationControl request SID 28 CC

#2 controlType = enableRxAndDisableTx,
suppressPosRspMsgIndicationBit = FALSE

01 ERXDTX

#3 communicationType = network management 02 NWMCP

Table 59 — CommunicationControl positive response message flow example

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 CommunicationControl response SID 68 CCPR

#2 ControlType 01 CTRLTP

9.6 TesterPresent (3E hex) service

9.6.1 Service description

This service is used to indicate to a server (or servers) that a client is still connected to the vehicle and that
certain diagnostic services and/or communications that have been previously activated are to remain active.

This service is used to keep one or multiple servers in a diagnostic session other than the defaultSession.
This can either be done by transmitting the TesterPresent request message periodically or, in case of the
absence of other diagnostic services, preventing the server(s) from automatically returning to the
defaultSession. The detailed session requirements that apply to the use of this service when keeping a single
server or multiple servers in a diagnostic session other than the defaultSession can be found in the
implementation specifications of ISO 14229.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.2 in the event that those addressing methods are implemented for this service.

ISO 14229:2006(E)

56 © ISO 2006 – All rights reserved

9.6.2 Request message

9.6.2.1 Request message definition

Table 60 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 TesterPresent Request Service Id M 3E TP

#2 sub-function = [
zeroSubFunction]

M
00/80

LEV_
ZSUBF

9.6.2.2 Request message sub-function parameter $Level (LEV_) definition

Table 61 specifies the sub-function parameter values defined for this service
[suppressPosRspMsgIndicationBit (bit 7) not shown].

Table 61 — Request message sub-function parameter definition

Hex
(bit 6-0) Description Cvt Mnemonic

00 zeroSubFunction M ZSUBF

 This parameter value is used to indicate that no sub-function value beside the
suppressPosRspMsgIndicationBit is supported by this service.

01 - 7F ISOSAEReserved M ISOSAERESRVD

 This range of values is reserved by ISO 14229.

9.6.2.3 Request message data parameter definition

This service does not support data parameters in the request message.

9.6.3 Positive response message

9.6.3.1 Positive response message definition

Table 62 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 TesterPresent Response Service Id S 7E TPPR

#2 zeroSubFunction M 00 ZSUBF

9.6.3.2 Positive response message data parameter definition

Table 63 — Response message data parameter definition

Definition

zeroSubFunction

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 57

9.6.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 64.

Table 64 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS

 Send if the sub-function parameter in the request message is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

9.6.5 Message flow example(s) TesterPresent

9.6.5.1 Example #1 — TesterPresent (suppressPosRspMsgIndicationBit = FALSE)

Table 65 — TesterPresent request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 TesterPresent request SID 3E TP

#2 zeroSubFunction,
suppressPosRspMsgIndicationBit = FALSE

00 ZSUBF

Table 66 — TesterPresent positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 TesterPresent response SID 7E TPPR

#2 zeroSubFunction 00 ZSUBF

9.6.5.2 Example #2 — TesterPresent (suppressPosRspMsgIndicationBit = TRUE)

Table 67 — TesterPresent request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 TesterPresent request SID 3E TP

#2 zeroSubFunction,
suppressPosRspMsgIndicationBit = TRUE

80 ZSUBF

There is no response sent by the server(s).

ISO 14229:2006(E)

58 © ISO 2006 – All rights reserved

9.7 AccessTimingParameter (83 hex) service

9.7.1 Service description

The AccessTimingParameter service is used to read and change the default timing parameters of a
communication link for the duration that this communication link is active.

The use of this service is complex and depends on the server’s capability and the data link topology. Only one
extended timing parameter set will be supported per diagnostic session. It is recommended to use this service
only with physical addressing because of the different sets of extended timing parameters supported by the
servers.

It is recommended to use the following sequence of services:

⎯ DiagnosticSessionControl (diagnosticSessionType) service;

⎯ AccessTimingParameter (readExtendedTimingParameterSet) service;

⎯ AccessTimingParameter (setTimingParametersToGivenValues) service.

If a response is required to be sent by the server, the client and server shall activate the new timing parameter
settings after the server has sent the AccessTimingParameter positive response message. If no response
message is allowed, the client and the server shall activate the new timing parameter after the
transmission/reception of the request message.

The server and the client shall reset their timing parameters to the default values after a successful switching
to another or the same diagnostic session (e.g. via DiagnosticSessionControl, ECUReset service or a session
timing timeout).

The AccessTimingParameter service provides four (4) different modes for the access to the server timing
parameters:

⎯ readExtendedTimingParameterSet;

⎯ setTimingParametersToDefaultValues;

⎯ readCurrentlyActiveTimingParameters;

⎯ setTimingParametersToGivenValues.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.2 in the event that those addressing methods are implemented for this service.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 59

9.7.2 Request message

9.7.2.1 Request message definition

Table 68 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 AccessTimingParameter Request Service Id M 83 ATP

#2 sub-function = [
timingParameterAccessType]

M 00-FF LEV_
TPAT_

#3
:

#n

TimingParameterRequestRecord [
byte #1
:
byte #m]

Ca
:
C

00-FF

:
00-FF

TPREQR_
B1
:

Bm

a C: The TimingParameterRequestRecord is only present if timingParameterAccessType = setTimingParametersToGivenValues.
The structure and content of the TimingParameterRequestRecord is data-link-layer-dependent and therefore defined in the
implementation specification(s) of ISO 14229.

9.7.2.2 Request message sub-function parameter $Level (LEV_) definition

The sub-function parameter timingParameterAccessType is used by the AccessTimingParameter service to
select the specific behaviour of the server. Explanations and usage of the possible timingParameterIdentifiers
are detailed below. The following sub-function values are specified [suppressPosRspMsgIndicationBit (bit 7)
not shown]:

Table 69 — Request message sub-function parameter definition

Hex
(bit 6-0) Description Cvt Mnemonic

00 ISOSAEReserved M ISOSAERESRVD

 This value is reserved by ISO 14229.

01 readExtendedTimingParameterSet U RETPS

 Upon receiving an AccessTimingParameter indication primitive with
timingParameterAccessType = readExtendedTimingParameterSet, the server shall
read the extended timing parameter set, i.e. the values that the server is capable of
supporting.

If the read access to the timing parameter set is successful, the server shall send
an AccessTimingParameter response primitive with the positive response
parameters.

If the read access to the timing parameters set is not successful, the server shall
send a negative response message with the appropriate negative response code.

This sub-function is used to provide an extra set of timing parameters for the
currently active diagnostic session.

With the timingParameterAccessType = setTimingParametersToGivenValues only,
this set (read by timingParameterAccessType = readExtendedTimingParameterSet)
of timing parameters can be set.

ISO 14229:2006(E)

60 © ISO 2006 – All rights reserved

Table 69 (continued)

Hex
(bit 6-0) Description Cvt Mnemonic

02 setTimingParametersToDefaultValues U STPTDV

 Upon receiving an AccessTimingParameter indication primitive with
timingParameterAccessType = setTimingParametersToDefaultValues, the server
shall change all timing parameters to the default values and send an
AccessTimingParameter response primitive with the positive response parameters
before the default timing parameters become active (if
suppressPosRspMsgIndicationBit is set to 'FALSE', otherwise the timing
parameters shall become active after the successful evaluation of the request
message).

If the timing parameters cannot be changed to default values for any reason, the
server shall maintain the currently active timing parameters and send a negative
response message with the appropriate negative response code.

The definition of the default timing values depends on the used data link and is
specified in the implementation specification(s) of ISO 14229.

03 readCurrentlyActiveTimingParameters U RCATP

 Upon receiving an AccessTimingParameter indication primitive with
timingParameterAccessType = readCurrentlyActiveTimingParameters, the server
shall read the currently used timing parameters.

If the read access to the timing parameters is successful, the server shall send an
AccessTimingParameter response primitive with the positive response parameters.

If the read access to the currently used timing parameters is impossible for any
reason, the server shall send a negative response message with the appropriate
negative response code.

04 setTimingParametersToGivenValues U STPTGV

 Upon receiving an AccessTimingParameter indication primitive with
timingParameterAccessType = setTimingParametersToGivenValues, the server
shall check if the timing parameters can be changed under the present conditions.

If the conditions are valid, the server shall perform all actions necessary to change
the timing parameters and send an AccessTimingParameter response primitive with
the positive response parameters before the new timing parameter values become
active (suppressPosRspMsgIndicationBit is set to 'FALSE', otherwise the timing
parameters shall become active after the successful evaluation of the request
message).

If the timing parameters cannot be changed for any reason, the server shall
maintain the currently active timing parameters and send a negative response
message with the appropriate negative response code.

It is not possible to set the timing parameters of the server to any set of values
between the minimum and maximum values read via timingParameterAccessType
= readExtendedTimingParameterSet. The timing parameters of the server can only
be set to exactly the timing parameters read via timingParameterAccessType =
readExtendedTimingParameterSet. A request to do so shall be rejected by the
server.

05-FF ISOSAEReserved M ISOSAERESRVD

 This value is reserved by ISO 14229 for future definition.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 61

9.7.2.3 Request message data parameter definition

The following data parameters are defined for the request message:

Table 70 — Request message data parameter definition

Definition

TimingParameterRequestRecord

This parameter record contains the timing parameter values to be set in the server via timingParameterAccessType =
setTimingParametersToGivenValues. The content and structure of this parameter record is data-link-layer-specific and
can be found in the implementation specification(s) of ISO 14229.

9.7.3 Positive response message

9.7.3.1 Positive response message definition

Table 71 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 AccessTimingParameter Response Service Id S C3 ATPPR

#2 timingParameterAccessType M 00-7F TPAT_

#3
:

#n

TimingParameterResponseRecord [
byte #1
:
byte #m]

C
:
C

00-FF

:
00-FF

TPRSPR_
B1
:

Bm

C: The TimingParameterResponseRecord is only present if timingParameterAccessType =
readExtendedTimingParameterSet or readCurrentlyActiveTimingParameters. The structure and content of the
TimingParameterResponseRecord is data-link-layer-dependent and therefore defined in the implementation
specification(s) of ISO 14229.

9.7.3.2 Positive response message data parameter definition

Table 72 — Response message data parameter definition

Definition

timingParameterAccessType

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message.

TimingParameterResponseRecord

This parameter record contains the timing parameter values read from the server via timingParameterAccessType =
readExtendedTimingParameterSet or readCurrentlyActiveTimingParameters. The content and structure of this parameter
record is data-link-layer-specific and can be found in the implementation specification(s) of ISO 14229.

ISO 14229:2006(E)

62 © ISO 2006 – All rights reserved

9.7.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 73.

Table 73 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS

 Send if selected timingParameterAccessType is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message or the format is wrong.

22 conditionsNotCorrect M CNC

 This code shall be returned if the criteria for the request AccessTimingParameter are
not met.

31 requestOutOfRange M ROOR

 This code shall be sent if the TimingParameterRequestRecord contains invalid timing
parameter values.

9.7.5 Message flow example(s) AccessTimingParameter

9.7.5.1 Example #1 — set timing parameters to default values

This message flow shows how to set the default timing parameters in a server. The client requests a response
message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-function parameter) to “FALSE”
(‘0’).

Table 74 — AccessTimingParameter request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 AccessTimingParameter request SID 83 ATP

#2 timingParameterAccessType =
setTimingParametersToDefaultValues,
suppressPosRspMsgIndicationBit = FALSE

02 TPAT_STPTDV

Table 75 — AccessTimingParameter positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 AccessTimingParameter response SID C3 ATPPR

#2 timingParameterAccessType =
setTimingParametersToDefaultValues

02 TPAT_STPTDV

Further examples for the usage of this service can be found in the implementation specifications of ISO 14229.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 63

9.8 SecuredDataTransmission (84 hex) service

9.8.1 Service description

9.8.1.1 Purpose

The purpose of this service is to transmit data that is protected against attacks from third parties, which could
endanger data security, according to ISO 15764.

The SecuredDataTransmission service is applicable if a client intends to use diagnostic services defined in
this document in a secured mode. It may also be used to transmit external data which conform to some other
application protocol, in a secured mode between a client and a server. A secured mode in this context means
that the data transmitted is protected by cryptographic methods.

9.8.1.2 Security sub-layer

This subclause briefly describes the security sub-layer as defined in ISO 15764.

Figure 10 illustrates the security sub-layer as defined in ISO 15764. The security sub-layer shall be added in
the server and client application for the purpose of performing diagnostic services in a secured mode.

Figure 10 — Security sub-layer implementation

ISO 14229:2006(E)

64 © ISO 2006 – All rights reserved

There are two (2) methods to perform diagnostic service data transfer between the client and server(s).

⎯ Unsecured data transmission mode:

The application uses the diagnostic services and application layer service primitives defined in this
document to exchange data between a client and a server. The security sub-layer performs a "pass-thru"
of data between "application" and "application layer" in the client and the server.

⎯ Secured data transmission mode:

The application uses the diagnostic services or external services and the security sub-layer service
primitives defined in ISO 15764 to exchange data between a client and a server. The security sub-layer
uses the SecuredDataTransmission service for the transmission/reception of the secured data. Secured
links must be point-to-point communication. Therefore, only physical addressing is allowed, which means
that only one server is involved.

The interface of the security sub-layer to the application is according to the ISO/OSI model conventions and
therefore provides the following four (4) security sub-layer (SS_) service primitives:

⎯ SS_SecuredMode.req: Security sub-layer request;

⎯ SS_SecuredMode.ind: Security sub-layer indication;

⎯ SS_SecuredMode.resp: Security sub-layer response;

⎯ SS_SecuredMode.conf: Security sub-layer confirmation.

ISO 14229 defines both confirmed and unconfirmed services. In a secured mode, only confirmed services are
allowed (suppressPosRspMsgIndicationBit = FALSE). Based on this requirement, the following services are
not allowed to be executed in a secured mode:

⎯ ResponseOnEvent (86 hex);

⎯ ReadDataByPeriodicIdentifier (2A hex); and

⎯ TesterPresent (3E hex).

The confirmed services (suppressPosRspMsgIndicationBit = FALSE) use the four (4) application layer service
primitives, request, indication, response and confirmation. Those are mapped onto the four (4) security
sub-layer service primitives and vice versa when executing a confirmed diagnostic service in a secured mode.

The task of the security sub-layer when performing a diagnostic service in a secured mode is to encrypt data
provided by the "application", to decrypt data provided by the "application layer" and to add, check and
remove security-specific data elements. The security sub-layer uses the SecuredDataTransmission (84 hex)
service of the application layer to transmit and receive the entire diagnostic message or message according to
an external protocol (request and response), which shall be exchanged in a secured mode.

The security sub-layer provides the service "SecuredServiceExecution" to the application for the purpose of a
secured execution of diagnostic services.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 65

The security sub-layer request and indication primitive of the "SecuredServiceExecution" service are specified
in ISO 15764 according to the following general format:

SS_SecuredMode.request (
SA,
TA,
TA_type,
[RA,]
[,parameter 1, ...]
)

SS_SecuredMode.indication (
SA,
TA,
TA_type,
[RA,]
[,parameter 1, ...]
)

The security sub-layer response and confirm primitive of the SecuredServiceExecution service are specified in
ISO 15764 according to the following general format:

SS_SecuredMode.response (
SA,
TA,
TA_type,
RA (optional)
Result,
[parameter 1, ...]
)

SS_SecuredMode.confirm (
SA,
TA,
TA_type,
RA (optional)
Result,
[parameter 1, ...]
)

Detailed information can be found in ISO 15764 about:

⎯ the security sub-layer service primitives (Service Data Units (SDU), [parameter 1, ...]);

⎯ the security sub-layer protocol data units (PDU); and

⎯ the tasks to be performed by the security sub-layer for a secured data transmission.

The addressing information shown in the security sub-layer service primitives is mapped directly onto the
addressing information of the application layer and vice versa.

ISO 14229:2006(E)

66 © ISO 2006 – All rights reserved

9.8.1.3 Security sub-layer access

The concept of accessing the security sub-layer for a secured service execution is similar to the application
layer interface as described in this document. The security sub-layer makes use of the application layer
service primitives.

The following describes the execution of confirmed diagnostic service in a secured mode.

⎯ The client application uses the security sub-layer SecuredServiceExecution service request to perform a
diagnostic service in a secured mode. The security sub-layer performs the required action to establish a
link with the server(s), adds the specific security-related parameters, encrypts the service data of the
diagnostic service to be executed in a secured mode if needed and uses the application layer
SecuredDataTransmission service request to transmit the secured data to the server.

⎯ The server receives an application layer SecuredDataTransmission service indication, which is handled
by the security sub-layer of the server. The security sub-layer of the server checks the security-specific
parameters, decrypts encrypted data and presents the data of the service to be executed in a secured
mode to the application via the security sub-layer SecuredServiceExecution service indication. The
application executes the service and uses the security sub-layer SecuredServiceExecution service
response to respond to the service in a secured mode. The security sub-layer of the server adds the
specific security-related parameters, encrypts the response message data if needed and uses the
application layer SecuredDataTransmission service response to transmit the response data to the client.

⎯ The client receives an application layer SecuredDataTransmission service confirmation primitive, which is
handled by the security sub-layer of the client. The security sub-layer of the client checks the
security-specific parameters, decrypts encrypted response data and presents the data via the security
sub-layer SecuredServiceExecution confirmation to the application.

Figure 11 graphically shows the interaction of the security sub-layer, the application layer and the application
when executing a confirmed diagnostic service in a secured mode.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 67

Figure 11 — Security sub-layer, application layer and application interaction

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.3 in the event that those addressing methods are implemented for this service.

9.8.2 Request message

9.8.2.1 Request message definition

The security sub-layer generates the application layer SecuredDataTransmission request message
parameters according to the rules defined in ISO 15764.

ISO 14229:2006(E)

68 © ISO 2006 – All rights reserved

Table 76 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 SecuredDataTransmission Request Service Id M 84 SDT

#2
:

#n

securityDataRequestRecord[] = [
securityDataParameter#1
:
securityDataParameter#m]

M
:
M

00-FF

:
00-FF

SECDRQR_
SDP_

:
SDP_

9.8.2.2 Request message sub-function parameter $Level (LEV_) definition

This service does not use a sub-function parameter.

9.8.2.3 Request message data parameter definition

The following data-parameters are defined for the request message:

Table 77 — Request message data parameter definition

Definition

securityDataRequestRecord

This parameter contains the data as processed by the Security Sub-Layer and is defined in ISO 15764.

9.8.3 Positive response message

9.8.3.1 Positive response message definition

Table 78 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

1 SecuredDataTransmission Response Service Id M C4 SDTPR

2
:
n

securityDataResponseRecord[] = [
securityDataParameter#1
:
securityDataParameter#m]

M
:
M

00-FF

:
00-FF

SECDRQR_
SDP_

:
SDP_

9.8.3.2 Positive response message data parameter definition

The following data parameters are defined for the positive response message:

Table 79 — Response message data parameter definition

Definition

securityDataResponseRecord

This parameter contains the data as processed by the Security Sub-Layer and is defined in ISO 15764.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 69

9.8.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 80. The response codes are always sent without
encryption, even if according to the configurationProfile in the request A_PDU the response A_PDU must be
encrypted.

Table 80 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The server shall use this response code if the length of the request A_PDU is not
correct.

38 - 4F reservedByExtendedDataLinkSecurityDocument M RBEDLSD

 This range of values is reserved by ISO 15764. Applicable negative response codes
are defined in ISO 15764.

NOTE The response codes listed above apply to the SecuredDataTransmission (84 hex) service. If the diagnostic
service performed in a secured mode requires a negative response, then this negative response is sent to the client in a
secured mode via a SecuredDataTransmission positive response message.

9.9 ControlDTCSetting (85 hex) service

9.9.1 Service description

The ControlDTCSetting service shall be used by a client to stop or resume the setting of diagnostic trouble
codes (DTCs) in the server(s).

The ControlDTCSetting request message can be used to stop the setting of diagnostic trouble codes in an
individual server or a group of servers. If the server being addressed is not able to stop the setting of
diagnostic trouble codes, it shall respond with a ControlDTCSetting negative response message indicating the
reason for the rejection.

The update of the DTC status bit information shall continue once a ControlDTCSetting request is performed
with sub-function set to “on” or a session layer timeout occurs (server transitions to defaultSession). The
server shall still send a positive response if the service is supported in the active session with a requested
sub-function set to either “on” or “off” even if the requested DTC setting state is already active.

If a clearDiagnosticInformation (14 hex) service is sent by the client, the ControlDTCSetting shall not prohibit
resetting the server's DTC memory.

If a successful ECUReset is performed, then this re-enables the setting of DTCs.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in section 7.5.2 in the event that those addressing methods are implemented for this service.

ISO 14229:2006(E)

70 © ISO 2006 – All rights reserved

9.9.2 Request message

9.9.2.1 Request message definition

Table 81 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ControlDTCSetting Request Service Id M 85 CDTCS

#2 sub-function = [
DTCSettingType]

M
00-FF

LEV_
DTCSTP_

#3
:

#n

DTCSettingControlOptionRecord [] = [
parameter#1
:
parameter#m

U
:
U

00-FF

:
00-FF

DTCSCOR_
PARA1

:
PARAm

9.9.2.2 Request message sub-function parameter $Level (LEV_) definition

The sub-function parameter DTCSettingType is used by the ControlDTCSetting request message to indicate
to the server(s) whether diagnostic trouble code setting shall stop or start again
[suppressPosRspMsgIndicationBit (bit 7) not shown in Table 82].

Table 82 — Request message sub-function parameter definition

Hex
(bit 6-0) Description Cvt Mnemonic

00 ISOSAEReserved M ISOSAERESRVD

 This value is reserved by this document.

01 on M ON

 The server(s) shall resume the setting of diagnostic trouble codes according to
normal operating conditions.

02 off M OFF

 The server(s) shall stop the setting of diagnostic trouble codes.

03 - 3F ISOSAEReserved M ISOSAERESRVD

 This range of values is reserved by this document for future definition.

40 - 5F vehicleManufacturerSpecific U VMS

 This range of values is reserved for vehicle-manufacturer-specific use.

60 - 7E systemSupplierSpecific U SSS

 This range of values is reserved for system-supplier-specific use.

7F ISOSAEReserved M ISOSAERESRVD

 This value is reserved by this document for future definition.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 71

9.9.2.3 Request message data parameter definition

The following data parameters are defined for this service:

Table 83 — Request message data parameter definition

Definition

DTCSettingControlOptionRecord

This parameter record is user-optional and transmits data to a server when controlling the DTC setting. It can contain a
list of DTCs to be turned on or off.

9.9.3 Positive response message

9.9.3.1 Positive response message definition

Table 84 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ControlDTCSetting Response Service Id S C5 CDTCSPR

#2 DTCSettingType M 00-7F DTCSTP

9.9.3.2 Positive response message data parameter definition

Table 85 — Response message data parameter definition

Definition

DTCSettingType

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message.

9.9.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 86.

Table 86 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS

 Send if the sub-function parameter in the request message is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect U CNC

 Used when the server is in a critical normal mode activity and therefore cannot
perform the requested DTC control functionality.

31 requestOutOfRange M ROOR

 The server shall use this response code if it detects an error in the
DTCSettingControlOptionRecord.

ISO 14229:2006(E)

72 © ISO 2006 – All rights reserved

9.9.5 Message flow example(s) ControlDTCSetting

9.9.5.1 Example #1 — ControlDTCSetting (DTCSettingType = off)

Note that this example does not use the capability of the service to transfer additional data to the server. The
client requests to have a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the
sub-function parameter) to “FALSE” (‘0’).

Table 87 — ControlDTCSetting request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ControlDTCSetting request SID 85 RDTCS

#2 DTCSettingType = off,
suppressPosRspMsgIndicationBit = FALSE

02 DTCSTP_OFF

Table 88 — ControlDTCSetting positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ControlDTCSetting response SID C5 RDTCSPR

#2 DTCSettingType = off 02 DTCSTP_OFF

9.9.5.2 Example #2 — ControlDTCSetting(suppressPosRspMsgIndicationBit= FALSE)

This example does not use the capability of the service to transfer additional data to the server. The client
requests a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-function
parameter) to “FALSE” (‘0’).

Table 89 — ControlDTCSetting request message flow example #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ControlDTCSetting request SID 85 ENC

#2 DTCSettingType = on,
suppressPosRspMsgIndicationBit = FALSE

01 DTCSTP_ON

Table 90 — ControlDTCSetting positive response message flow example #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ControlDTCSetting response SID C5 RDTCSPR

#2 DTCSettingType = on 01 DTCSTP_ON

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 73

9.10 ResponseOnEvent (86 hex) service

9.10.1 Service description

The ResponseOnEvent service requests a server to start or stop transmission of responses on a specified
event.

This service provides the possibility of automatically executing a diagnostic service in the event that a
specified event occurs in the server. The client specifies the event (including optional event parameters) and
the service (including service parameters) to be executed if the event occurs. See Figure 12 for a brief
overview of client and server behaviour.

Figure 12 — ResponseOnEvent service — Client and server behaviour

NOTE Figure 12 above assumes that the event window timer is configured to timeout prior to the power down of the
server, therefore the final ResponseOnEvent positive response message is shown at the end of the event timing window.

The server shall evaluate the sub-function and data content of the ResponseOnEvent request message at the
time of the reception. This includes the following sub-function and parameters:

⎯ eventType,

⎯ eventWindowTime, and

⎯ eventTypeRecord (eventTypeParameter #1-#m).

ISO 14229:2006(E)

74 © ISO 2006 – All rights reserved

In case of invalid data in the ResponseOnEvent request message, a negative response with the negative
response code 31 hex shall be sent. The serviceToRespondToRecord is not part of this evaluation. The
serviceToRespondToRecord parameter will be evaluated when the specified event occurs, which triggers the
execution of the service contained in the serviceToRespondToRecord. At the time the event occurs, the
serviceToRespondToRecord (diagnostic service request message) shall be executed. If conditions are not
correct, a negative response message with the appropriate negative response code shall be sent. Multiple
events shall be signalled in the order of their occurrence.

The following implementation rules shall apply.

1) The ResponseOnEvent service can be set up and activated in any session, including the defaultSession.
TesterPresent service is not necessarily required to keep the ResponseOnEvent service active.

2) If the specified event occurs when a diagnostic service is in progress, which means that either a request
message is in progress to be received, or a request is executed, or a response message is in progress
(this includes the negative response message handling with response code 78 hex) to be transmitted (if
suppressPosRspMsgIndicationBit = FALSE), then the execution of the request message contained in the
serviceToRespondToRecord shall be postponed until the completion of the diagnostic service in progress.

If the specified event is accepted by the server, the client shall not request the following diagnostic services
until the event window is passed:

⎯ CommunicationControl;

⎯ DynamicallyDefineDataIdentifier;

⎯ RequestDownload;

⎯ RequestUpload;

⎯ TransferData;

⎯ RequestTransferExit;

⎯ RoutineControl.

The server is not executing any diagnostic service at the point in time the specified event occurs, the server
executes the service contained in the serviceToRespondToRecord.

Once the ResponseOnEvent service is initiated, the server shall support the data link where this service has
been submitted while the ResponseOnEvent service is active.

A DiagnosticSessionControl service shall stop the ResponseOnEvent service regardless of whether a different
session than the current session or the same session is activated

It is recommended to use only the services listed in Table 91 for the service to be performed if the specified
event occurs (serviceToRespondTo request service Identifier).

Table 91 — Recommended services to be used with the ResponseOnEvent service

Recommended services
(ServiceToRespondTo)

Request Service Identifier
(SId)

Response Service Identifier
(SId)

ReadDataByIdentifier 22 62

ReadDTCInformation 19 59

RoutineControl 31 71

InputOutputControlByIdentifier 2F 6F

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 75

It is allowed to run different multiple ResponseOnEvent services at a time and to stop individual
serviceToRespondTo services. While no serviceToRespondTo is currently in progress, running the server
shall handle any additional diagnostic service request.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.2 in the event that those addressing methods are implemented for this service.

9.10.2 Request message

9.10.2.1 Request message definition

Table 92 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ResponseOnEvent Request Service Id M 86 ROE

#2 sub-function = [
eventType]

M
00-FF

LEV_
ETP

#3 eventWindowTime M 00-FF EWT

#4
:

#(m-1)+4

eventTypeRecord[] = [
eventTypeParameter 1
:
eventTypeParameter m]

C1

a
:

C1

00-FF

:
00-FF

ETR_
ETP1

:
ETPm

#n-(r-1)-1
#n-(r-1)

:
#n

serviceToRespondToRecord[] = [
serviceId
serviceParameter 1
:
serviceParameter r]

C2

b
C3

c
:

C3

00-FF
00-FF

:
00-FF

STRTR_
SI

SP1
:

SPr

a C1 is present if the eventType requires additional parameters to be specified for the event to respond to.

b C2 shall be present if the sub-function parameter is not equal to reportActivatedEvents, stopResponseOnEvent,
startResponseOnEvent, ClearResponseOnEvent.

c C3 is present if the service request of the service to respond to requires additional service parameters.

9.10.2.2 Request message sub-function parameter $Level (LEV_) definition

The sub-function parameter eventType is used by the ResponseOnEvent request message to specify the
event to be configured in the server and to control the ResponseOnEvent set up. Each sub-function parameter
value given in Table 94 also specifies the length of the applicable eventTypeRecord
[suppressPosRspMsgIndicationBit (bit 7) not shown in Table 94].

Bit 6 of the eventType sub-function parameter is used to indicate whether the event will be stored in
non-volatile memory in the server and re-activated upon the next power-up of the server or if it shall terminate
once the server powers down (storageState parameter).

ISO 14229:2006(E)

76 © ISO 2006 – All rights reserved

Table 93 — eventType sub-function bit 6 definition — storageState

Bit 6
value Description Cvt Mnemonic

0 doNotStoreEvent M DNSE

 This value indicates that the event shall terminate when the server powers down and the
server shall not continue a ResponseOnEvent diagnostic service after a reset or power on
(i.e. the ResponseOnEvent service is terminated).

1 storeEvent U SE

 This value indicates that the event shall resume sending serviceToRespondTo responses
according to the ResponseOnEvent set-up after a power cycle of the server.

Table 94 — Request message sub-function parameter definition

Hex
(bit 5-0) Description Cvt Mnemonic

00 stopResponseOnEvent U STPROE

 This value is used to stop the server sending responses on event. The event logic
that has been set up is not cleared but can be restarted with the
startResponseOnEvent sub-function parameter.

Length of eventTypeRecord: 0 byte.

01 onDTCStatusChange U ONDTCS

 This value identifies the event as a new DTC detected matching the
DTCStatusMask specified for this event.

Length of eventTypeRecord: 1 byte.

Implementation hint: A server resident DTC count algorithm shall count the number
of DTCs satisfying the client-defined DTCStatusMask at a certain periodic rate (e.g.
approximately 1 second). If the count is different from that which was calculated on
the previous execution, the client shall generate the event that causes the execution
of the serviceToRespondTo. The latest count shall then be stored as a reference for
the next calculation.

This eventType requires the specification of the DTCStatusMask in the request
message (eventTypeParameter#1).

02 onTimerInterrupt U OTI

 This value identifies the event as a timer interrupt, but the timer and its values are
not part of the ResponseOnEvent service.

This eventType requires the specification of more details in the request message
(eventTypeRecord).

Length of eventTypeRecord: 1 byte.

03 onChangeOfDataIdentifier U OCODID

 This value identifies the event as a new internal data record identified by the
dataIdentifier. The data values are vehicle-manufacturer-specific.

This eventType requires the specification of more details in the request message
(eventTypeRecord).

Length of eventTypeRecord: 2 bytes.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 77

Table 94 (continued)

Hex
(bit 5-0) Description Cvt Mnemonic

04 reportActivatedEvents U RAE

 This value is used to indicate that in the positive response all events are reported
that have been activated in the server with the ResponseOnEvent service (and are
currently active).

Length of eventTypeRecord: 0 byte.

05 startResponseOnEvent M STRTROE

 This value is used to indicate to the server to activate the event logic (including
event window timer) that has been set up and start sending responses on event.

Length of eventTypeRecord: 0 byte.

06 clearResponseOnEvent M CLRROE

 This value is used to clear the event logic that has been set up in the server. (This
also stops the server sending responses on event.)

Length of eventTypeRecord: 0 byte.

07 onComparisonOfValues U OCOV

 This is a defined alteration of a data value out of a specific record identified by a
dataIdentifier which identifies a data value event. With this sub-function, the user
shall have the possibility of defining an event at the occurrence of a specific result
gathered from a defined measurement value comparison. A specific measurement
value included in a data record assigned to a defined dataIdentifier is compared
with a given comparison value. The specified operator defines the kind of
comparison. The event occurs if the comparison result is positive.

Length of eventTypeRecord: 10 bytes.

08 - 1F ISOSAEReserved M ISOSAERESRVD

 This range of values is reserved by this document for future definition.

20 - 2F VehicleManufacturerSpecific U VMS

 This range of values is reserved for vehicle-manufacturer-specific use.

30 - 3E SystemSupplierSpecific U SSS

 This range of values is reserved for system-supplier-specific use.

3F ISOSAEReserved M ISOSAERESRVD

 This value is reserved by this document for future definition.

NOTE For easier description, the request message sub-function parameters can be divided into two different groups:

⎯ sub-function parameters to request a set-up of response on event (“ROE set-up sub-functions”), and

⎯ sub-function parameters to control the response on event set-up, like startResponseOnEvent, stopResponseOnEvent
clearResponseOnEvent, reportActivatedEvents (“ROE control sub-functions”).

ISO 14229:2006(E)

78 © ISO 2006 – All rights reserved

9.10.2.3 Request message data parameter definition

The following data parameters are defined for this service:

Table 95 — Request message data parameter definition

Definition

eventWindowTime

The parameter eventWindowTime is used to specify a window for the event logic to be active in the server. If the
parameter value of eventWindowTime is set to 02 hex then the response time is infinite. In case of an infinite event
window, it is recommended to close the event window by a certain signal (e.g. power off). See annex B.2 for specified
eventWindowTimes.

NOTE This parameter is not applicable to be evaluated by the server if the eventType is equal to a ROE control sub-function.

eventTypeRecord

This parameter record contains additional parameters for the specified eventType.

serviceToRespondToRecord

This parameter record contains the service parameters (service Id and service parameters) of the service to be executed
in the server each time the specified event defined in the eventTypeRecord occurs.

9.10.3 Positive response message

9.10.3.1 Positive response message definition

Table 96 — Positive response message definition for all sub-functions but reportActivatedEvents

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ResponseOnEvent Response Service Id S C6 ROEPR

#2 eventType M 00-7F ETP

#3 numberOfIdentifiedEvents M 00-FF NOIE

#4 eventWindowTime M 00-FF EWT

#5
:

#(m-1)+5

eventTypeRecord[] = [
eventTypeParameter 1
:
eventTypeParameter m]

C1

a

:
C1

00-FF

:
00-FF

ETR_
ETP1

:
ETPm

#n-(r-1)-1
#n-(r-1)

:
#n

serviceToRespondToRecord[] = [
serviceId
serviceParameter 1
:
serviceParameter r]

M

C2
b

:
C2

00-FF
00-FF

:
00-FF

STRTR_
SI

SP1
:

SPr

a C1 is present if the eventType requires additional parameters to be specified for the event to respond to.

b C2 is present if the service request of the service to respond to requires additional service parameters.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 79

Table 97 — Positive response message definition — sub-function = reportActivatedEvents

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ResponseOnEvent Response Service Id S C6 ROEPR

#2 eventType = reportActivatedEvents M 04 ETP_RAE

#3 numberOfActivatedEvents M 00-FF NOIE

#4 eventTypeOfActiveEvent #1 C1
a

 00-FF EVOAE

#5 eventWindowTime #1 C1 00-FF EWT

#6
:

#(m-1)+6

eventTypeRecord #1[] = [
eventTypeParameter 1
:
eventTypeParameter m]

C2

b
:

C2

00-FF

:
00-FF

ETR_
ETP1

:
ETPm

#p-(o-1)-1
#p-(o-1)

:
#p

serviceToRespondToRecord #1[] = [
serviceId
serviceParameter 1
:
serviceParameter o]

C3

c
C4

d
:

C4

00-FF
00-FF

:
00-FF

STRTR_
SI

SP1
:

SPo

: : : : :

: eventTypeOfActiveEvent #k C1 00-FF EVOAE

: eventWindowTime #k C1 00-FF EWT

:
:
:

eventTypeRecord #k[] = [
eventTypeParameter 1
:
eventTypeParameter q]

C2
:

C2

00-FF

:
00-FF

ETR_
ETP1

:
ETPm

#n-(r-1)-1
#n-(r-1)

:
#n

serviceToRespondToRecord #k[] = [
serviceId
serviceParameter 1
:
serviceParameter r]

C3
C4
:

C4

00-FF
00-FF

:
00-FF

STRTR_
SI

SP1
:

SPr

a C1 is present if an active event is reported.

b C2 is present if the reported eventType of the active event (eventTypeOfActiveEvent) requires additional parameters to be specified
for the event to respond to.

c C3 shall be present when reporting an active event.

d C4 is present if the reported service request of the service to respond to requires additional service parameters.

ISO 14229:2006(E)

80 © ISO 2006 – All rights reserved

9.10.3.2 Positive response message data parameter definition

Table 98 — Response message data parameter definition

Definition

eventType

This parameter is an echo of bits 6 - 0 of the sub-function parameter of the request message.

eventTypeOfActiveEvent

This parameter is an echo of the sub-function parameter of the request message that was issued to set-up the active
event. The applicable values are the ones specified for the eventType sub-function parameter.

numberOfActivatedEvents

This parameter contains the number of active events when the client requests to report the number of active events. This
number reflects the number of events reported in the response message.

numberOfIdentifiedEvents

This parameter contains the number of identified events during an active event window and is only applicable for the
response message sent at the end of the event window (in case of a finite event window). The initial response to the
request message shall contain a zero (0) in this parameter.

eventWindowTime

This parameter is an echo of the eventWindowTime parameter from the request message. When reporting an active
event, this parameter contains the time remaining for the event to be active.

eventTypeRecord

This parameter is an echo of the eventTypeRecord parameter from the request message. When reporting an active
event, this parameter is an echo of the eventTypeRecord of the request that was issued to set-up the active event.

serviceToRespondToRecord

This parameter is an echo of the serviceToRespondToRecord parameter from the request message. When reporting an
active event, this parameter is an echo of the serviceToRespondToRecord of the request that was issued to set up the
active event.

9.10.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 99.

Table 99 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS

 Send if the sub-function parameter in the request message is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect U CNC

 Used when the server is in a critical normal mode activity and therefore cannot
perform the requested functionality.

31 requestOutOfRange M ROOR

 The server shall use this response code:

1) if it detects an error in the eventTypeRecord parameter;

2) if the specified eventWindowTime is invalid.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 81

9.10.5 Message flow example(s) ResponseOnEvent

9.10.5.1 Assumptions

For the message flow examples, it is assumed that the eventWindowTime equal to 08 hex defines an event
window of 80 seconds (eventWindowTime * 10 seconds). The client requests a response message by setting
the suppressPosRspMsgIndicationBit (bit 7 of the sub-function parameter) to “FALSE” (‘0’).

NOTE The definition of the eventWindowTime is vehicle-manufacturer-specific, except for certain values as specified
in B.2.

The following conditions apply to the shown message flow examples and flowcharts:

⎯ Trigger signal: It is up to the vehicle manufacturer to define a specific trigger signal which causes the
client (external test equipment, OBD-Unit, diagnostic master, etc.) to start the ResponseOnEvent request
message. This trigger signal could be enabled by an event as well as by a fixed timing schedule like a
heartbeat-time (which should be greater than the eventWindowTime). Furthermore, there could be a
synchronous message (e.g. SYNCH-signal) on the data link used as trigger signal.

⎯ Open event window: On receiving the ResponseOnEvent request message, the server shall evaluate
the request. If the evaluation is positive, the server shall set up the event logic and shall send the initial
positive response message of the ResponseOnEvent service. To activate the event logic, the client shall
request ResponseOnEvent sub-function startResponseOnEvent. After the positive response, the event
logic is activated and the event window timer is running. It is up to the vehicle manufacturer to define the
event window in detail, using the parameter eventWindowTime (e.g. timing window, ignition on/off
window). In case of detecting the specified eventType (EART_), the server shall respond immediately
with the response message corresponding to the serviceToRespondToRecord in the ResponseOnEvent
request message.

⎯ Close event window: It is recommended to close the event window of the server according to the
parameter eventWindowTime. After this action, the server shall stop sending event-driven diagnostic
response messages. The same could either be reached by sending the ResponseOnEvent (ROE_)
request message including the parameter stopResponseOnEvent, or by power off.

9.10.5.2 Example #1 — ResponseOnEvent (finite event window)

Table 100 — Set up ResponseOnEvent request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ResponseOnEvent request SID 86 ROE

#2 eventTypeRecord [eventType] = onDTCStatusChange,
storageState = doNotStoreEvent
suppressPosRspMsgIndicationBit = FALSE

01 ET_ODTCSC

#3 eventWindowTime = 80 seconds 08 EWT

#4 eventTypeRecord [eventTypeParameter] = testFailed status 01 ETP1

#5 serviceToRespondToRecord [serviceId] = ReadDTCInformation 19 RDTCI

#6 serviceToRespondToRecord [sub-function] =
reportNumberOfDTCByStatusMask

01 RNDTC

#7 serviceToRespondToRecord [DTCStatusMask] = testFailed status 01 DTCSM

ISO 14229:2006(E)

82 © ISO 2006 – All rights reserved

Table 101 — ResponseOnEvent initial positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ResponseOnEvent response SID C6 ROEPR

#2 eventType = onDTCStatusChange 01 ET_ODTCSC

#3 numberOfIdentifiedEvents = 0 00 NOIE

#4 eventWindowTime = 80 seconds 08 EWT

#5 eventTypeRecord [eventTypeParameter] = testFailed status 01 ETP1

#6 serviceToRespondToRecord [serviceId] = ReadDTCInformation 19 RDTCI

#7 serviceToRespondToRecord [sub-function] =
reportNumberOfDTCByStatusMask

01 RNDTC

#8 serviceToRespondToRecord [DTCStatusMask] = testFailed status 01 DTCSM

Once the event logic is set up, it shall then be activated.

Table 102 — Start ResponseOnEvent request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ResponseOnEvent request SID 86 ROE

#2 eventTypeRecord [eventType] = startResponseOnEvent,
storageState = doNotStoreEvent
suppressPosRspMsgIndicationBit = FALSE

05 ET_STRTROE

#3 eventWindowTime (will not be evaluated) 08 EWT

Table 103 — ResponseOnEvent positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ResponseOnEvent response SID C6 ROEPR

#2 eventType = onDTCStatusChange 01 ET_ODTCSC

#3 numberOfIdentifiedEvents = 0 00 NOIE

#4 eventWindowTime 08 EWT

If the specified event occurs, the server sends the response message according to the specified
serviceToRespondToRecord.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 83

Table 104 — ReadDTCInformation positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCI

#2 DTCStatusAvailibilityMask FF DTCSAM

#3 DTCCount [DTCCountHighByte] = 0 00 DTCCNT_HB

#4 DTCCount [DTCCountLowByte] = 4 04 DTCCNT_LB

The message flow for cases where the client requests a report on the currently active events in the server
during the active event window will look as follows.

Table 105 — ResponseOnEvent request number of active events message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ResponseOnEvent request SID 86 ROE

#2 eventTypeRecord [eventType] = reportActivatedEvents,
storageState = doNotStoreEvent
suppressPosRspMsgIndicationBit = FALSE

04 ET_RAE

Table 106 — ResponseOnEvent reportActivatedEvents positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ResponseOnEvent response SID C6 ROEPR

#2 eventType = reportActivatedEvents 04 ET_RAE

#3 numberOfActivatedEvents = 1 01 NOAE

#4 eventTypeOfActiveEvent = onDTCStatusChange 01 ET_ODTCSC

#5 eventWindowTime = 80 seconds 08 EWT

#6 eventTypeRecord [eventTypeParameter] = testFailed status 01 ETP1

#7 serviceToRespondToRecord [serviceId] = ReadDTCInformation 19 RDTCI

#8 serviceToRespondToRecord [sub-function] =
reportNumberOfDTCByStatusMask

01 RNDTC

#9 serviceToRespondToRecord [DTCStatusMask] = testFailed status 01 DTCSM

ISO 14229:2006(E)

84 © ISO 2006 – All rights reserved

If the specified event window time has expired, the server shall send a final positive response.

Table 107 — ResponseOnEvent final positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ResponseOnEvent response SID C6 ROEPR

#2 eventType = onDTCStatusChange 01 ET_ODTCSC

#3 numberOfIdentifiedEvents = 1 01 NOIE

#4 eventWindowTime = 80 seconds 08 EWT

#5 eventTypeRecord [eventTypeParameter] = testFailed status 01 ETP1

#6 serviceToRespondToRecord [serviceId] = ReadDTCInformation 19 RDTCI

#7 serviceToRespondToRecord [sub-function] =
reportNumberOfDTCByStatusMask

01 RNDTC

#8 serviceToRespondToRecord [DTCStatusMask] = testFailed status 01 DTCSM

9.10.5.2.1 Example #1 — Flowcharts

The following flowcharts show two different kinds of server behaviour.

⎯ No event occurs within the finite event window: in this case, the server shall send the response of the
ResponseOnEvent at the end of the event window.

⎯ Multiple events (#1 to #n) within a finite event window: each positive response of the
serviceToRespondTo is related to an identified event (#1 to #n) and shall have the same service identifier
(SId) but might have different content. At the end of the event_Window, the server shall transmit a
positive response message of the responseOnEvent service, which indicates the
numberOfIdentifiedEvents.

Figure 13 — Finite event window — No event during active event window

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 85

Figure 14 — Finite event window — Multiple events during active event window

9.10.5.3 Example #2 — ResponseOnEvent (infinite event window)

Table 108 — ResponseOnEvent request message flow example #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ResponseOnEvent request SID 86 ROE

#2 eventTypeRecord [eventType] = onDTCStatusChange,
storageState = doNotStoreEvent
suppressPosRspMsgIndicationBit = FALSE

01 ET_ODTCSC

#3 eventWindowTime = infinite 02 EWT

#4 eventTypeRecord [eventTypeParameter] = testFailed status 01 ETP1

#5 serviceToRespondToRecord [serviceId] = ReadDTCInformation 19 RDTCI

#6 serviceToRespondToRecord [sub-function] =
reportNumberOfDTCByStatusMask

01 RNDTC

#7 serviceToRespondToRecord [DTCStatusMask] = testFailed status 01 DTCSM

ISO 14229:2006(E)

86 © ISO 2006 – All rights reserved

Table 109 — ResponseOnEvent initial positive response message flow example #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ResponseOnEvent response SID C6 ROEPR

#2 eventType = onDTCStatusChange 01 ET_ODTCSC

#3 numberOfIdentifiedEvents = 0 00 NOIE

#4 eventWindowTime = infinite 02 EWT

#5 eventTypeRecord [eventTypeParameter] = testFailed status 01 ETP1

#6 serviceToRespondToRecord [serviceId] = ReadDTCInformation 19 RDTCI

#7 serviceToRespondToRecord [sub-function] =
reportNumberOfDTCByStatusMask

01 RNDTC

#8 serviceToRespondToRecord [DTCStatusMask] = testFailed status 01 DTCSM

Once the event logic is set up, it shall then be activated.

Table 110 — Start ResponseOnEvent request message flow example #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ResponseOnEvent request SID 86 ROE

#2 eventTypeRecord [eventType] = startResponseOnEvent,
storageState = doNotStoreEvent
suppressPosRspMsgIndicationBit = FALSE

05 ET_STRTROE

#3 eventWindowTime (will not be evaluated) 02 EWT

Table 111 — ResponseOnEvent positive response message flow example #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ResponseOnEvent response SID C6 ROEPR

#2 eventType = onDTCStatusChange 05 ET_ODTCSC

#3 numberOfIdentifiedEvents = 0 00 NOIE

#4 eventWindowTime 02 EWT

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 87

In case the specified event occurs, the server sends the response message according to the specified
serviceToRespondToRecord.

Table 112 — ReadDTCInformation positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCI

#2 DTCStatusAvailibilityMask xx DTCSAM

#3 DTCCount [DTCCountHighByte] = 0 00 DTCCNT_HB

#4 DTCCount [DTCCountLowByte] = 4 04 DTCCNT_LB

9.10.5.3.1 Example #2 — Flowcharts

The following flowcharts show two different kinds of server behaviour.

⎯ No event occurs within the infinite event window.

⎯ Multiple events (#1 to #n) within a infinite event window: each positive response of the
serviceToRespondTo is related to an identified event (#1 to #n) and shall have the same service identifier
(SId) but might have different content.

Figure 15 — Infinite event window — No event during active event window

ISO 14229:2006(E)

88 © ISO 2006 – All rights reserved

Figure 16 — Infinite event window — Multiple events during active event window

9.10.5.4 Example #3 — ResponseOnEvent (infinite event window) — Sub-function parameter
“onComparisonOfValues”

This example only explains the utilization of sub-function parameter “onComparisonOfValues”, assuming that
the communication behaviour of the ROE service described in Example #1 and Example #2 has not changed.
Therefore, this example does not describe the complete message flow. Instead, only the event window set-up
request message and the positive response message to the occurring event is shown and explained. Start
and stop request messages as well as the different response messages are already described in the
examples above.

The following conditions apply:

⎯ service 22 hex – ReadDataByIdentifier is chosen as the serviceToRespondTo;

⎯ the dataIdentifier 0104 hex includes the measurement value which is to be compared at data byte #11
and #12 (this measurement value may also be read by utilising service 22 hex);

⎯ an event occurs if the measurement value (MV) is higher than the so-called comparison parameter (CP),
therefore the operator value (see description below) is chosen as 01 hex – “MV > CP”;

⎯ as hysteresis value 0A hex – 10 % is chosen;

⎯ as eventWindowTime the value 02 hex – “infinite” is chosen;

⎯ as storageState (eventType sub-function bit 6) the value 1 binary – “storeEvent” is chosen;

⎯ in any case, a response is requested.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 89

The following is a description of the eventTypeRecord. The usage of the eventTypeRecord is vehicle-
manufacturer-specific, similar to the eventTypes described so far. Therefore, the following description is only
an example explaining the usage of the eventType “onComparisonOfValues”. The specific number of
necessary eventTypeRecord parameters is also manufacturer-specific. In this example, 10 data bytes are
used.

Byte #4&5: dataIdentifier 0104 hex.

Byte #6&7: Localization of reading and definition of reading type. The bit numbering within these 2 bytes of
information is counted from the least significant bit through to the most significant bit. Bit #0
(LSB) - Bit #9 (MSB) contain the start bit number of the reading. With 10 bits, the maximal size of
a data record is 128 bytes.

EXAMPLE 1 If the reading is in the 11th byte of the data record, the following applies: 11x8 = 88 dec = 0001011000b Bit
#10 - Bit #14: length in bits - 1. With 5 bits, there is a maximum size of 32 bits = “long”.

EXAMPLE 2 For a “word”, the length is therefore 15 dec = 01111b Bit #15: Sign entry: 1 = signed, 0 = unsigned.

EXAMPLE 3 Total assignment would be: 1011 1100 0101 1000b = BC58 hex, thus byte #6 contains BC hex, byte #7
contains 58 hex.

Byte #8: Comparison operation (operator) defines the type of comparison which shall be executed:

⎯ MV>CP content: 01 hex;

⎯ MV<CP 02 hex;

⎯ MV=CP 03 hex;

⎯ MV<>CP 04 hex;

⎯ “<” and “>” provided for analogue values, “=” and “<>” for digital variables;

⎯ MV: measurement value; and

⎯ CP: comparison parameter.

EXAMPLE 4 Operator MV > CP = 01 hex.

Byte #9-12: Comparison parameters: due to the 4-byte length, all data formats from Bit through to Long type
can be transmitted.

EXAMPLE 5 If the comparison value is 5242 dec = 00 00 14 7A hex, byte #9 = 00 hex, byte #10 = 00 hex, byte #11 = 14
hex and byte #12 = 7A hex.

Byte #13: Hysteresis value (specified as a percentage of the comparison parameter): the value is specified
directly. It only applies to the operators “<” and “>”. In case of zero as the comparison value, the
hysteresis value shall be defined as an absolute value.

EXAMPLE 6 Hysteresis value 10% = 0A hex.

ISO 14229:2006(E)

90 © ISO 2006 – All rights reserved

Table 113 — ResponseOnEvent request message example #3

Message direction: client → server

Message type: Request

A_Data
byte Description (all values are in hexadecimal) Byte value

(hex) Mnemonic

#1 ResponseOnEvent request SID 86 ROE

#2 eventTypeRecord [eventType] = onComparisonOfValues,
storageState = storeEvent
suppressPosRspMsgIndicationBit=FALSE

47 ET_OCOV

#3 eventWindowTime = infinite 02 EWT

#4 eventTypeRecord [eventTypeParameter#1] = recordDataIdentifier High Byte 01 ETR_ETP1

#5 eventTypeRecord [eventTypeParameter#2] = recordDataIdentifier Low Byte 04 ETR_ETP2

#6 eventTypeRecord [eventTypeParameter#3] = Valueinfo #1 BC ETR_ETP3

#7 eventTypeRecord [eventTypeParameter#4] = Valueinfo #2 58 ETR_ETP4

#8 eventTypeRecord [eventTypeParameter#5] = Operator 01 ETR_ETP5

#9 eventTypeRecord [eventTypeParameter#6] = Comparison Parameter Byte#4 00 ETR_ETP6

#10 eventTypeRecord [eventTypeParameter#7] = Comparison Parameter Byte#3 00 ETR_ETP7

#11 eventTypeRecord [eventTypeParameter#8] = Comparison Parameter
Byte#2

14 ETR_ETP8

#12 eventTypeRecord [eventTypeParameter#9] = Comparison Parameter
Byte#1

7A ETR_ETP9

#13 eventTypeRecord [eventTypeParameter#10] = Hysteresis [%] 0A ETR_ETP10

#14 serviceToRespondToRecord [serviceID] = ReadDataByIdentifier 22 RDBI

#15 serviceToRespondToRecord [serviceParameter#1] = dataIdentifier (MSB) 01 DID_B1

#16 serviceToRespondToRecord [serviceParameter#2] = dataIdentifier (LSB) 04 DID_B2

NOTE Response message and subsequent initialisation sequence are not shown.

After a successful event window set-up and activation of the ROE mechanism, the server reacts if the
measurement value is higher than 5242 decimal. The specified event occurs and the server sends the
following message.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 91

Table 114 — ReadDataByIdentifier positive response message example #3

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier response SID 62 RDBIPR

#2 dataIdentifier [byte#1] (MSB) 01 DID_B1

#3 dataIdentifier [byte#2] (LSB) 04 DID_B2

#4 dataRecord [data#1] xx DREC_DATA1

#5 dataRecord [data#2] xx DREC_DATA2

#6 dataRecord [data#3] xx DREC_DATA3

#7 dataRecord [data#4] xx DREC_DATA4

#8 dataRecord [data#5] xx DREC_DATA5

#9 dataRecord [data#6] xx DREC_DATA6

#10 dataRecord [data#7] xx DREC_DATA7

#11 dataRecord [data#8] xx DREC_DATA8

#12 dataRecord [data#9] xx DREC_DATA9

#13 dataRecord [data#10] xx DREC_DATA10

#14 dataRecord [data#11] data content of byte#11: 14 hex 14 DREC_DATA11

#15 dataRecord [data#12] data content of byte#12: 7B hex 7B DREC_DATA12

: : : :

No further event occurs before the measurement value goes below 90 % of the comparison parameter value
at least once. This behaviour is specified by the hysteresis value. If this condition was fulfilled and the
measurement value is again higher than the comparison value, a new event occurs and a new
ReadDataByIdentifier response message is sent by the server.

9.11 LinkControl (87 hex) service

9.11.1 Service description

The LinkControl service is used to control the communication link baud rate between the client and the
server(s) for the exchange of diagnostic data. This service optionally applies to those data link layers which
allow for a baud rate transition during an active diagnostic session.

NOTE Further details on the appliance and usage of this service on a certain data link layer can be found in the data-
link-layer-specific diagnostic services implementation specification.

This service is used to transition the baud rate of the data link layer. To overcome functional communication,
where the baud rate must be transitioned in multiple servers at the same time, the baud rate transition is split
into two steps:

⎯ Step #1: The client verifies if the transition can be performed and informs the server(s) about the baud
rate to be used. Each server shall respond positively (suppressPosRspMsgIndicationBit = FALSE) before
the client performs step #2. This step does not actually perform the baud rate transition.

⎯ Step #2: The client actually requests the transition of the baud rate. This step shall only be performed if it
is verified that the baud rate transition can be performed (step #1 performed). In case of functional
communication, it is recommended that there should not be any response from a server when the baud
rate is transitioned (suppressPosRspMsgIndicationBit = TRUE) because one server might already have
been transitioned to the new baud rate while others still need to transmit their response message(s)
(baud rate mismatch avoidance).

ISO 14229:2006(E)

92 © ISO 2006 – All rights reserved

The linkControlType parameter in the request message, in conjunction with the conditional
baudrateIdentifier/linkBaudrateRecord parameter, provides a mechanism to transition to a predefined or
specifically defined baud rate.

Any baud rate transition shall occur as follows:

⎯ suppressPosRspMsgIndicationBit = TRUE: after the successful transmission/reception of the client
request message, which requests the baud rate transition.

⎯ suppressPosRspMsgIndicationBit = FALSE: after the successful transmission/reception of the server
positive response message, which confirms the successful reception
of the request, which requests the baud rate transition.

NOTE This service is tied to a non-defaultSession. A session layer timer timeout will transition the server(s) back to
its (their) normal speed of operation. The same applies if an ECUReset service (11 hex) is performed. The transition into
another non-defaultSession shall not influence the baud rate.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.2 in the event that those addressing methods are implemented for this service.

9.11.2 Request message

9.11.2.1 Request message definition

Table 115 — Request message definition (linkControlType =
verifyBaudrateTransitionWithFixedBaudrate)

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 LinkControl Request Service Id M 87 LC

#2 sub-function = [
linkControlType]

M
00-FF

LEV_
LCTP_

#3 baudrateIdentifier C1
a

00-FF BI_

a The C1 parameter is present if the sub-function parameter indicates that a verification of a fixed baud rate
(verifyBaudrateTransitionWithFixedBaudrate) is done.

Table 116 — Request message definition (linkControlType =
verifyBaudrateTransitionWithSpecificBaudrate)

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 LinkControl Request Service Id M 87 LC

#2 sub-function = [
linkControlType]

M
00-FF

LEV_
LCTP_

#3
#4
#5

linkBaudrateRecord[] = [
baudrateHighByte
baudrateMiddleByte
baudrateLowByte]

C2

a

C2
C2

00-FF
00-FF
00-FF

LBR_
BRHB
BRMB
BRLB

a The C2 parameter is present if the sub-function parameter indicates that a verification of a specific baud rate
(verifyBaudrateTransitionWithSpecificBaudrate) is done.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 93

9.11.2.2 Request message sub-function parameter $Level (LEV_) definition

The sub-function parameter linkControlType is used by the LinkControl request message to describe the
action to be performed in the server [suppressPosRspMsgIndicationBit (bit 7) not shown in Table below].

Table 117 — Request message sub-function parameter definition

Hex
(bit 6-0) Description Cvt Mnemonic

00 ISOSAEReserved M ISOSAERESRVD

 This value is reserved by this document.

01 verifyBaudrateTransitionWithFixedBaudrate U VBTWFBR

 This parameter is used to verify if a transition to a predefined baud rate, which is
specified by the baudrateIdentifier data parameter, can be performed.

02 verifyBaudrateTransitionWithSpecificBaudrate U VBTWSBR

 This parameter is used to verify if a transition to a specifically defined baud rate,
which is specified by the linkBaudrateRecord data parameter, can be performed.

03 transitionBaudrate U TB

 This sub-function parameter requests the server(s) to transition the baud rate to the
one that was specified in the preceding verification message.

04 - 3F ISOSAEReserved M ISOSAERESRVD

 This range of values is reserved by this document for future definition.

40 - 5F vehicleManufacturerSpecific U VMS

 This range of values is reserved for vehicle-manufacturer-specific use.

60 - 7E systemSupplierSpecific U SSS

 This range of values is reserved for system-supplier-specific use.

7F ISOSAEReserved M ISOSAERESRVD

 This value is reserved by this document for future definition.

9.11.2.3 Request message data parameter definition

The data parameters in Table 118 are defined for this service.

Table 118 — Request message data parameter definition

Definition

baudrateIdentifier

This conditional parameter references a fixed defined baud rate to transition to (see annex B.3).

linkBaudrateRecord

This conditional parameter record contains a specific baud rate ([bit/s]) in cases where the sub-function parameter
indicates that a specific baud rate is used.

ISO 14229:2006(E)

94 © ISO 2006 – All rights reserved

9.11.3 Positive response message

9.11.3.1 Positive response message definition

Table 119 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 LinkControl Response Service Id S C7 LCPR

#2 linkControlType M 00-7F LCTP

9.11.3.2 Positive response message data parameter definition

Table 120 — Response message data parameter definition

Definition

linkControlType

This parameter is an echo of bits 6 - 0 of the linkControlType sub-function parameter from the request message.

9.11.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 121.

Table 121 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS

 Send if the sub-function parameter in the request message is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect M CNC

 This code shall be returned if the criteria for the requested LinkControl are not met.

24 requestSequenceError M RSE

 This code shall be returned if the client requests the transition of the baud rate without
a preceding verification step which specifies the baud rate to transition to.

31 requestOutOfRange M ROOR

 This code shall be returned if:

1) the requested fixed baud rate (baudrateIdentifier) is invalid;

2) the specific baud rate (linkBaudrateRecord) is invalid.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 95

9.11.5 Message flow example(s) LinkControl

9.11.5.1 Example #1 — Transition baud rate to fixed baud rate (PC baud rate 115200 kBit/s)

9.11.5.1.1 Step #1 — Verify if all criteria are met for a baud rate switch

Table 122 — LinkControl request message flow example #1 — step #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 LinkControl request SID 87 LC

#2 linkControlType = verifyBaudrateTransitionWithFixedBaudrate,
suppressPosRspMsgIndicationBit = FALSE

01 VBTWFBR

#3 baudrateIdentifier = PC115200Baud 05 BI_PC115200

Table 123 — LinkControl positive response message flow example #1 — step #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 LinkControl response SID C7 LCPR

#2 linkControlType = verifyBaudrateTransitionWithFixedBaudrate 01 VBTWFBR

9.11.5.1.2 Step #2: Transition the baud rate

Table 124 — LinkControl request message flow example #1 — step #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 LinkControl request SID 87 LC

#2 linkControlType = transitionBaudrate,
suppressPosRspMsgIndicationBit = TRUE

83 TB

There is no response from the server(s). The client and the server(s) shall transition the baud rate of their
communication link.

ISO 14229:2006(E)

96 © ISO 2006 – All rights reserved

9.11.5.2 Example #2 — Transition baud rate to specific baud rate (150kBit/s)

9.11.5.2.1 Step #1 — Verify if all criteria are met for a baud rate switch

Table 125 — LinkControl request message flow example #2, step #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 LinkControl request SID 87 LC

#2 linkControlType = verifyBaudrateTransitionWithSpecificBaudrate,
suppressPosRspMsgIndicationBit = FALSE

02 VBTWSBR

#3 linkBaudrateRecord [baudrateHighByte] (150kBit/s) 02 BR_BRHB

#4 linkBaudrateRecord [baudrateMiddleByte] 49 BR_BRMB

#5 linkBaudrateRecord [baudrateLowByte] F0 BR_BRLB

Table 126 — LinkControl positive response message flow example #2, step #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 LinkControl response SID C7 LCPR

#2 linkControlType = verifyBaudrateTransitionWithSpecificBaudrate 02 VBTWSBR

9.11.5.2.2 Step #2 — Transition the baud rate

Table 127 — LinkControl request message flow example #2, step #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 LinkControl request SID 87 LC

#2 linkControlType = transitionBaudrate,
suppressPosRspMsgIndicationBit = TRUE

83 TB

There is no response from the server(s). The client and the server(s) shall transition the baud rate of their
communication link.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 97

10 Data transmission functional unit

10.1 Overview

Table 128 — Data transmission functional unit

Service Description

ReadDataByIdentifier The client requests to read the current value of a record identified by a provided
dataIdentifier.

ReadMemoryByAddress The client requests to read the current value of the provided memory range.

ReadScalingDataByIdentifier The client requests to read the scaling information of a record identified by a
provided dataIdentifier.

ReadDataByPeriodicIdentifier The client requests to schedule data in the server for periodic transmission.

DynamicallyDefineDataIdentifier The client requests to dynamically define data Identifiers that may subsequently
be read by the readDataByIdentifier service.

WriteDataByIdentifier The client requests to write a record specified by a provided dataIdentifier.

WriteMemoryByAddress The client requests to overwrite a provided memory range.

10.2 ReadDataByIdentifier (22 hex) service

10.2.1 Service description

The ReadDataByIdentifier service allows the client to request data record values from the server identified by
one or more dataIdentifiers.

The client request message contains one or more two-byte dataIdentifier values that identify data record(s)
maintained by the server (refer to C.1 for allowed dataIdentifier values). The format and definition of the
dataRecord shall be vehicle-manufacturer- or system-supplier-specific, and may include analogue input and
output signals, digital input and output signals, internal data and system status information if supported by the
server.

The server may limit the number of dataIdentifiers that can be simultaneously requested as agreed upon by
the vehicle manufacturer and system supplier.

Upon receiving a ReadDataByIdentifier request, the server shall access the data elements of the records
specified by the dataIdentifier parameter(s) and transmit their value in one single ReadDataByIdentifier
positive response containing the associated dataRecord parameter(s). The request message may contain the
same dataIdentifier multiple times. The server shall treat each dataIdentifier as a separate parameter and
respond with data for each dataIdentifier as often as requested.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.3 in the event that those addressing methods are implemented for this service.

ISO 14229:2006(E)

98 © ISO 2006 – All rights reserved

10.2.2 Request message

10.2.2.1 Request message definition

Table 129 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDataByIdentifier Request Service Id M 22 RDBI

#2
#3

dataIdentifier[] #1 = [
byte#1 (MSB)
byte#2]

M
M

00-FF
00-FF

DID_
HB
LB

: : : : :

#n-1
#n

dataIdentifier[] #m = [
byte#1 (MSB)
byte#2]

U
U

00-FF
00-FF

DID_
HB
LB

10.2.2.2 Request message sub-function parameter $Level (LEV_) Definition

This service does not use a sub-function parameter.

10.2.2.3 Request message data parameter definition

The following data parameters are defined for this service.

Table 130 — Request message data parameter definition

Definition

dataIdentifier (#1 to #m)
This parameter identifies the server data record(s) being requested by the client (see C.1 for detailed parameter
definition).

10.2.3 Positive response message

10.2.3.1 Positive response message definition

Table 131 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDataByIdentifier Response Service Id M 62 RDBIPR

#2
#3

dataIdentifier[] #1 = [
byte#1 (MSB)
byte#2]

M
M

00-FF
00-FF

DID_
HB
LB

#4
:

#(k-1)+4

dataRecord[] #1 = [
data#1
:
data#k]

M
:
U

00-FF

:
00-FF

DREC_
DATA_1

:
DATA_m

: : : : :

#n-(o-1)-2
#n-(o-1)-1

dataIdentifier[] #m = [
byte#1 (MSB)
byte#2]

U
U

00-FF
00-FF

DID_
HB
LB

#n-(o-1)

:
#n

dataRecord[] #m = [
data#1
:
data#o]

U
:
U

00-FF

:
00-FF

DREC_
DATA_1

:
DATA_k

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 99

10.2.3.2 Positive response message data parameter definition

Table 132 — Response message data parameter definition

Definition

dataIdentifier (#1 to #m)

This parameter is an echo of the data parameter dataIdentifier from the request message.

dataRecord (#1 to #k/o)

This parameter is used by the ReadDataByIdentifier positive response message to provide the requested data record
values to the client. The content of the dataRecord is not defined in this document and is vehicle-manufacturer-specific.

10.2.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 133.

Table 133 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 This response code shall be sent if the length of the request message is invalid.

22 conditionsNotCorrect U CNC

 This response code shall be sent if the operating conditions of the server for
performing the required action are not met.

31 requestOutOfRange M ROOR

 This code shall be sent if:

1) none of the requested dataIdentifier values are supported by the device;

2) the client exceeded the maximum number of dataIdentifiers allowed to be
requested at a time.

33 securityAccessDenied M SAD

 This code shall be sent if at least one of the dataIdentifiers is secured and the server
is not in an unlocked state.

10.2.5 Message flow example ReadDataByIdentifier

10.2.5.1 Assumptions

This subclause specifies the conditions to be fulfilled for the example in order to perform a
ReadDataByIdentifier service. The client may request dataIdentifier data at any time independent of the status
of the server.

The dataIdentifier examples below are specific to a powertrain device (e.g. engine control module). Refer to
ISO/TR 15031-2 for further details regarding accepted terms/definitions/acronyms for emissions-related
systems.

The first example reads a single two-byte dataIdentifier containing a single piece of information (where
dataIdentifier F190 hex contains the VIN number).

The second example demonstrates requesting multiple dataIdentifiers with a single request (where
dataIdentifier 010A hex contains engine coolant temperature, throttle position, engine speed, manifold
absolute pressure, mass air flow, vehicle speed sensor, barometric pressure, calculated load value, idle air
control and accelerator pedal position, and dataIdentifier 0110 hex contains battery positive voltage).

ISO 14229:2006(E)

100 © ISO 2006 – All rights reserved

10.2.5.2 Example #1 — Read single dataIdentifier F190 hex (VIN number)

Table 134 — ReadDataByIdentifier request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier request SID 22 RDBI

#2 dataIdentifier [byte#1] (MSB) F1 DID_B1

#3 dataIdentifier [byte#2] 90 DID_B2

Table 135 — ReadDataByIdentifier positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier response SID 62 RDBIPR

#2 dataIdentifier [byte#1] (MSB) F1 DID_B1

#3 dataIdentifier [byte#2] 90 DID_B2

#4 dataRecord [data#1] = VIN Digit 1 = “W” 57 DREC_DATA1

#5 dataRecord [data#2] = VIN Digit 2 = “0” 30 DREC_DATA2

#6 dataRecord [data#3] = VIN Digit 3 = “L” 4C DREC_DATA3

#7 dataRecord [data#4] = VIN Digit 4 = “0” 30 DREC_DATA4

#8 dataRecord [data#5] = VIN Digit 5 = “0” 30 DREC_DATA5

#9 dataRecord [data#6] = VIN Digit 6 = “0” 30 DREC_DATA6

#10 dataRecord [data#7] = VIN Digit 7 = “0” 30 DREC_DATA7

#11 dataRecord [data#8] = VIN Digit 8 = “4” 34 DREC_DATA8

#12 dataRecord [data#9] = VIN Digit 9 = “3” 33 DREC_DATA9

#13 dataRecord [data#10] = VIN Digit 10 = “M” 4D DREC_DATA10

#14 dataRecord [data#11] = VIN Digit 11 = “B” 42 DREC_DATA11

#15 dataRecord [data#12] = VIN Digit 12 = “5” 35 DREC_DATA12

#16 dataRecord [data#13] = VIN Digit 13 = “4” 34 DREC_DATA13

#17 dataRecord [data#14] = VIN Digit 14 = “1” 31 DREC_DATA14

#18 dataRecord [data#15] = VIN Digit 15 = “3” 33 DREC_DATA15

#19 dataRecord [data#16] = VIN Digit 16 = “2” 32 DREC_DATA16

#20 dataRecord [data#17] = VIN Digit 17 = “6” 36 DREC_DATA17

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 101

10.2.5.3 Example #2 — Read multiple dataIdentifiers 010A hex and 0110 hex

Table 136 — ReadDataByIdentifier request message flow example #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier request SID 22 RDBI

#2 dataIdentifier #1 [byte#1] (MSB) 01 DID_B1

#3 dataIdentifier #1 [byte#2] 0A DID_B2

#4 dataIdentifier #2 [byte#1] (MSB) 01 DID_B1

#5 dataIdentifier #2 [byte#2] 10 DID_B2

Table 137 — ReadDataByIdentifier positive response message flow example #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier response SID 62 RDBIPR

#2 dataIdentifier [byte#1] (MSB) 01 DID_B1

#3 dataIdentifier [byte#2] (LSB) 0A DID_B2

#4 dataRecord [data#1] = ECT A6 DREC_DATA1

#5 dataRecord [data#2] = TP 66 DREC_DATA2

#6 dataRecord [data#3] = RPM 07 DREC_DATA3

#7 dataRecord [data#4] = RPM 50 DREC_DATA4

#8 dataRecord [data#5] = MAP 20 DREC_DATA5

#9 dataRecord [data#6] = MAF 1A DREC_DATA6

#10 dataRecord [data#7] = VSS 00 DREC_DATA7

#11 dataRecord [data#8] = BARO 63 DREC_DATA8

#12 dataRecord [data#9] = LOAD 4A DREC_DATA9

#13 dataRecord [data#10] = IAC 82 DREC_DATA10

#14 dataRecord [data#11] = APP 7E DREC_DATA11

#15 dataIdentifier [byte#1] (MSB) 01 DID_B1

#16 dataIdentifier [byte#2] (LSB) 10 DID_B2

#17 dataRecord [data#1] = B+ 8C DREC_DATA1

ISO 14229:2006(E)

102 © ISO 2006 – All rights reserved

10.3 ReadMemoryByAddress (23 hex) service

10.3.1 Service description

The ReadMemoryByAddress service allows the client to request memory data from the server via a provided
starting address and to specify the size of memory to be read.

The ReadMemoryByAddress request message is used to request memory data from the server identified by
the parameter memoryAddress and memorySize. The number of bytes used for the memoryAddress and
memorySize parameter is defined by addressAndLengthFormatIdentifier (low and high nibble).

It is also possible to use a fixed addressAndLengthFormatIdentifier and unused bytes within the
memoryAddress or memorySize parameter are padded with the value 00 hex in the higher range address
locations.

In case of overlapping memory areas, it is possible to use an additional memoryAddress byte as a
memoryIdentifier (e.g. use of internal and external flash).

The server sends data record values via the ReadMemoryByAddress positive response message. The format
and definition of the dataRecord parameter shall be vehicle manufacturer specific. The dataRecord parameter
may include analogue input and output signals, digital input and output signals, internal data and system
status information if supported by the server.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.3 in the event that those addressing methods are implemented for this service.

10.3.2 Request message

10.3.2.1 Request message definition

Table 138 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadMemoryByAddress Request Service Id M 23 RMBA

#2 addressAndLengthFormatIdentifier M 00-FF ALFID

#3
:

#(m-1)+3

memoryAddress[] = [
byte#1 (MSB)
:
byte#m]

M
:

C1
a

00-FF

:
00-FF

MA_
B1
:

Bm

#n-(k-1)

:
#n

memorySize[] = [
byte#1 (MSB)
:
byte#k]

M
:

C2
b

00-FF

:
00-FF

MS_
B1
:

Bk

a The presence of the C1 parameter depends on address length information parameter of the addressAndLengthFormatIdentifier.

b The presence of the C2 parameter depends on the memory size length information of the addressAndLengthFormatIdentifier.

10.3.2.2 Request message sub-function parameter $Level (LEV_) definition

This service does not use a sub-function parameter.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 103

10.3.2.3 Request message data parameter definition

The following data parameters are defined for this service.

Table 139 — Request message data parameter definition

Definition

addressAndLengthFormatIdentifier

This parameter is a one byte value with each nibble encoded separately (see annex G.1 for example values):

bit 7 - 4: length (number of bytes) of the memorySize parameter;

bit 3 - 0: length (number of bytes) of the memoryAddress parameter.

memoryAddress

The parameter memoryAddress is the starting address of server memory from which data is to be retrieved. The number
of bytes used for this address is defined by the low nibble (bit 3 - 0) of the addressFormatIdentifier. Byte#m in the
memoryAddress parameter is always the least significant byte of the address being referenced in the server. The most
significant byte of the address can be used as a memoryIdentifier.

An example of the use of a memoryIdentifier would be a dual processor server with 16-bit addressing and memory
address overlap (when a given address is valid for either processor but yields a different physical memory device or
internal and external flash is used). In this case, an otherwise unused byte within the memoryAddress parameter can be
specified as a memoryIdentifier used to select the desired memory device. Usage of this functionality shall be as defined
by vehicle manufacturer/system supplier.

memorySize

The parameter memorySize in the ReadMemoryByAddress request message specifies the number of bytes to be read
starting at the address specified by memoryAddress in the server's memory. The number of bytes used for this size is
defined by the high nibble (bit 7 - 4) of the addressFormatIdentifier.

10.3.3 Positive response message

10.3.3.1 Positive response message definition

Table 140 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadMemoryByAddress Response Service Id M 63 RMBAPR

#2
:

#n

dataRecord[] = [
data#1
:
data#m]

M
:
U

00-FF

:
00-FF

DREC_
DATA_1

:
DATA_m

10.3.3.2 Positive response message data parameter definition

Table 141 — Response message data parameter definition

Definition

dataRecord

This parameter is used by the ReadMemoryByAddress positive response message to provide the requested data record
values to the client. The content of the dataRecord is not defined in this document and shall reflect the requested memory
contents. Data formatting shall be as defined by vehicle manufacturer/system supplier.

ISO 14229:2006(E)

104 © ISO 2006 – All rights reserved

10.3.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 142.

Table 142 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect U CNC

 This response code shall be sent if the operating conditions of the server are not met
to perform the required action.

31 requestOutOfRange M ROOR

 This response code shall be sent if

1) any memory address within the interval [$MA, ($MA + $MS -$1)] is invalid,

2) any memory address within the interval [$MA, ($MA + $MS -$1)] is restricted,

3) the memorySize parameter value in the request message is greater than the
maximum value supported by the server,

4) the specified addressAndLengthFormatIdentifier is not valid.

33 SecurityAccessDenied M SAD

 This code shall be sent if any memory address within the interval [$MA, ($MA + $MS
-$1)] is secure and the server is locked.

10.3.5 Message flow example ReadMemoryByAddress

10.3.5.1 Assumptions

This subclause specifies the conditions to be fulfilled for the example to perform a ReadMemoryByAddress
service. The service in this example is not limited by any restriction of the server.

10.3.5.2 Example #1 — ReadMemoryByAddress — 4-byte (32-bit) addressing

The client reads 259 data bytes from the server’s memory starting at memory address 20481392 hex.

Table 143 — ReadMemoryByAddress request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadMemoryByAddress request SID 23 RMBA

#2 addressAndLengthFormatIdentifier 24 ALFID

#3 memoryAddress [byte#1] (MSB) 20 MA_B1

#4 memoryAddress [byte#2] 48 MA_B2

#5 memoryAddress [byte#3] 13 MA_B3

#6 memoryAddress [byte#4] 92 MA_B4

#7 memorySize [byte#1] (MSB) 01 MS_B1

#8 memorySize [byte#2] 03 MS_B2

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 105

Table 144 — ReadMemoryByAddress positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadMemoryByAddress response SID 63 RMBAPR

#2 dataRecord [data#1] (memory cell #1) 00 DREC_DATA_1

: : : :

#259+1 dataRecord [data#3] (memory cell #259) 8C DREC_DATA_259

10.3.5.3 Example #2 — ReadMemoryByAddress — 2-byte (16-bit) addressing

The client reads five data bytes from the server’s memory starting at memory address 4813 hex.

Table 145 — ReadMemoryByAddress request message flow example #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadMemoryByAddress request SID 23 RMBA

#2 addressAndLengthFormatIdentifier 12 ALFID

#3 memoryAddress [byte#1] (MSB) 48 MA_B1

#4 memoryAddress [byte#2] (LSB) 13 MA_B2

#5 memorySize [byte#1] 05 MS_B1

Table 146 — ReadMemoryByAddress positive response message flow example #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadMemoryByAddress response SID 63 RMBAPR

#2 dataRecord [data#1] (memory cell #1) 43 DREC_DATA_1

#3 dataRecord [data#2] (memory cell #2) 2A DREC_DATA_2

#4 dataRecord [data#3] (memory cell #3) 07 DREC_DATA_3

#5 dataRecord [data#4] (memory cell #4) 2A DREC_DATA_4

#6 dataRecord [data#5] (memory cell #5) 55 DREC_DATA_5

ISO 14229:2006(E)

106 © ISO 2006 – All rights reserved

10.3.5.4 Example #3 — ReadMemoryByAddress — 3-byte (24-bit) addressing

The client reads three data bytes from the server's external RAM cells starting at memory address
204813 hex.

Table 147 — ReadMemoryByAddress request message flow example #3

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadMemoryByAddress request SID 23 RMBA

#2 addressAndLengthFormatIdentifier 23 ALFID

#3 memoryAddress [byte#1] (MSB) 20 MA_B1

#4 memoryAddress [byte#2] 48 MA_B2

#5 memoryAddress [byte#3] (LSB) 13 MA_B3

#6 memorySize [byte#1] (MSB) 00 MS_B1

#7 memorySize [byte#2] (LSB) 03 MS_B2

Table 148 — ReadMemoryByAddress first positive response message, example #3

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadMemoryByAddress response SID 63 RMBAPR

#2 dataRecord [data#1] (memory cell #1) 00 DREC_DATA_1

#3 dataRecord [data#2] (memory cell #2) 01 DREC_DATA_2

#4 dataRecord [data#3] (memory cell #3) 8C DREC_DATA_3

10.4 ReadScalingDataByIdentifier (24 hex) service

10.4.1 Service description

The ReadScalingDataByIdentifier service allows the client to request scaling data record information from the
server identified by a dataIdentifier.

The client request message contains one dataIdentifier value that identifies data record(s) maintained by the
server (refer to C.1 for allowed dataIdentifier values). The format and definition of the dataRecord shall be
vehicle-manufacturer-specific and may include analogue input and output signals, digital input and output
signals, internal data and system status information if supported by the server.

Upon receiving a ReadScalingDataByIdentifier request, the server shall access the scaling information
associated with the specified dataIdentifier parameter and transmit the scaling information values in one
ReadScalingDataByIdentifier positive response.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.3 in the event that those addressing methods are implemented for this service.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 107

10.4.2 Request message

10.4.2.1 Request message definition

Table 149 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadScalingDataByIdentifier Request Service Id M 24 RSDBI

#2
#3

dataIdentifier[] = [
byte#1 (MSB)
byte#2]

M
M

00-FF
00-FF

DID_
HB
LB

10.4.2.2 Request message sub-function parameter $Level (LEV_) definition

This service does not use a sub-function parameter.

10.4.2.3 Request message data parameter definition

The following data parameters are defined for this service.

Table 150 — Request message data parameter definition

Definition

dataIdentifier

This parameter identifies the server data record that is being requested by the client (see C.1 for a detailed parameter
definition).

10.4.3 Positive response message

10.4.3.1 Positive response message definition

Table 151 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadScalingDataByIdentifier Response Service Id M 64 RSDBIPR

#2
#3

dataIdentifier[] = [
byte#1 (MSB)
byte#2 (LSB)]

M
M

00-FF
00-FF

DID_
HB
LB

#4 scalingByte #1 M 00-FF SB_1

#5
:

#(p-1)+5

scalingByteExtension [] #1 = [
scalingByteExtensionParameter#1
:
scalingByteExtensionParameter#p]

C1

a
:

C1

00-FF

:
00-FF

SBE_
PAR1

:
PARp

: : : : :

#n-r scalingByte #k C2
b

 00-FF SB_k

#n-(r-1)

:
#n

scalingByteExtension [] #k = [
scalingByteExtensionParameter#1
:
scalingByteExtensionParameter#r]

C1
:

C1

00-FF

:
00-FF

SBE_
PAR1

:
PARr

a The presence of the C1 parameter depends on the scalingByte high nibble. It is mandatory that it be present if the scalingByte high
nibble is encoded as formula, unit/format or bitMappedReportedWithOutMask.
b The presence of the C2 parameter depends on whether the encoding of the scaling information requires more than one byte.

ISO 14229:2006(E)

108 © ISO 2006 – All rights reserved

10.4.3.2 Positive response message data parameter definition

Table 152 — Response message data parameter definition

Definition

dataIdentifier

This parameter is an echo of the data parameter dataIdentifier from the request message.

scalingByte (#1 to #k)

This parameter is used by the ReadScalingDataByIdentifier positive response message to provide the requested scaling
data record values to the client (see C.2 for a detailed parameter definition).

scalingByteExtension (#1 to #p / #1 to #r)

This parameter is used to provide additional information for scalingBytes with a high nibble encoded as formula,
unit/format or bitMappedReportedWithOutMask (see C.3 for a detailed parameter definition).

10.4.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 153.

Table 153 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 This response code shall be sent if the length of the request message is invalid.

22 conditionsNotCorrect U CNC

 This response code shall be sent if the operating conditions of the server to perform
the required action are not met.

31 requestOutOfRange M ROOR

 This return code shall be sent if

1) the requested dataIdentifier value is not supported by the device (physical
addressing only),

2) the requested dataIdentifier value is supported by the device, but no scaling
information is available for the specified dataIdentifier.

33 securityAccessDenied M SAD

 This code shall be sent if the dataIdentifier is secured and the server is not in an
unlocked state.

10.4.5 Message flow example ReadScalingDataByIdentifier

10.4.5.1 Assumptions

This subclause specifies the conditions to be fulfilled for the example to perform a
ReadScalingDataByIdentifier service. The client may request dataIdentifier scaling data at any time,
independent of the status of the server.

The first example reads the scaling information associated with the two (2) byte dataIdentifier F190 hex, which
contains a single piece of information (17-character VIN number).

The second example demonstrates the use of a formula and unit identifier for specifying a data variable in a
server.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 109

The third example illustrates the use of readScalingDataByIdentifier to return the supported bits (validity mask)
for a bit-mapped dataIdentifier that is reported without the mask through the use of readDataByIdenditfier.

10.4.5.2 Example #1 — readScalingDataByIdentifier with dataIdentifier F190 hex (VIN number)

Table 154 — ReadScalingDataByIdentifier request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadScalingDataByIdentifier request SID 24 RSDBI

#2 dataIdentifier [byte#1] (MSB) F1 DID_B1

#3 dataIdentifier [byte#2] (LSB) 90 DID_B2

Table 155 — ReadScalingDataByIdentifier positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadScalingDataByIdentifier response SID 64 RSDBIPR

#2 dataIdentifier [byte#1] (MSB) F1 DID_B1

#3 dataIdentifier [byte#2] (LSB) 90 DID_B2

#4 scalingByte#1 {ASCII, 15 data bytes} 6F SB_1

#5 scalingByte#2 {ASCII, 2 data bytes} 62 SB_2

10.4.5.3 Example #2 — readScalingDataByIdentifier with dataIdentifier 0105 hex (Vehicle Speed)

Table 156 — ReadScalingDataByIdentifier request message flow example #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadScalingDataByIdentifier request SID 24 RSDBI

#2 dataIdentifier [byte#1] (MSB) 01 DID_B1

#3 dataIdentifier [byte#2] (LSB) 05 DID_B2

ISO 14229:2006(E)

110 © ISO 2006 – All rights reserved

Table 157 — ReadScalingDataByIdentifier positive response message flow example #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadScalingDataByIdentifier response SID 64 RSDBIPR

#2 dataIdentifier [byte#1] (MSB) 01 DID_B1

#3 dataIdentifier [byte#2] (LSB) 05 DID_B2

#4 scalingByte #1 {unsigned numeric, 1 data byte} 01 SBYT_1

#5 scalingByte #2 {formula, 0 data bytes} 90 SB_2

#6 scalingByteExtension #2 [byte#1] {formulaIdentifier = C0 * x + C1} 00 SBE_21

#7 scalingByteExtension #2 [byte#2] {C0 high byte} E0 SBE_22

#8 scalingByteExtension #2 [byte#3] {C0 low byte} [C0 = 75 * 10−2] 4B SBE_23

#9 scalingByteExtension #2 [byte#4] {C1 high byte} 00 SBE_24

#10 scalingByteExtension #2 [byte#5] {C1 low byte} [C1 = 30 * 100] 1E SBE_25

#11 scalingByte#3 {unit/format, 0 data bytes} A0 SB_3

#12 scalingByteExtension #3 [byte#1] {unit ID, km/h} 30 SBE_31

Using the information contained in C.2 for decoding the scalingBytes, constants (C0, C1) and units, the data
variable of vehicle speed is calculated using the following formula:

Vehicle Speed = (0.75 * x + 30) km/h

where x is the actual data stored in the server and is identified by dataIdentifier 0105 hex.

10.4.5.4 Example #3 — readScalingDataByIdentifier with dataIdentifier 0967 hex

This example shows how a client could determine which bits are supported for a dataIdentifier in a server that
is formatted as a bit-mapped record reported without a validity mask.

The example dataIdentifier (0967 hex) is defined in Table 158.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 111

Table 158 — Example data definition

Data Byte Bit(s) Description

7-4 Unused.

3 Medium-speed fan is commanded on.

2 Medium-speed fan output fault detected.

1 Purge monitor soak time status flag.

#1

0 Purge monitor idle test is prevented due to refuel event.

7 Check fuel cap light is commanded on.

6 Check fuel cap light output fault detected.

5 Fan control A output fault detected.

4 Fan control B output fault detected.

3 High-speed fan output fault detected.

2 High-speed fan output is commanded on.

1 Purge monitor idle test (small leak) ready to run.

#2

0 Purge monitor small leak has been monitored.

Table 159 — ReadScalingDataByIdentifier request message flow example #3

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadScalingDataByIdentifier request SID 24 RSDBI

#2 dataIdentifier [byte#1] (MSB) 09 DID_B1

#3 dataIdentifier [byte#2] (LSB) 67 DID_B2

Table 160 — ReadScalingDataByIdentifier positive response message flow example #3

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadScalingDataByIdentifier response SID 64 RSDBIPR

#2 dataIdentifier [byte#1] (MSB) 09 DID_HB

#3 dataIdentifier [byte#2] (LSB) 67 DID_LB

#4 scalingByte #1 {bitMappedReportedWithOutMask, 2 data bytes} 22 SBYT_1

#5 scalingByteExtension #1 [byte#1] {dataRecord#1 Validity Mask} 03 SBYE_11

#6 scalingByteExtension #1 [byte#2] {dataRecord#2 Validity Mask} 43 SBYE_12

The above example makes the assumption that the only bits supported (i.e. that contain information) for this
dataIdentifier in the server are byte#1, bits 1 and 0, and byte#2, bits 6, 1, and 0.

ISO 14229:2006(E)

112 © ISO 2006 – All rights reserved

10.5 ReadDataByPeriodicIdentifier (2A hex) service

10.5.1 Service description

The ReadDataByPeriodicIdentifier service allows the client to request the periodic transmission of data record
values from the server identified by one or more periodicDataIdentifiers.

The client request message contains one or more 1-byte periodicDataIdentifier values that identify data
record(s) maintained by the server. The periodicDataIdentifier represents the low byte of a dataIdentifier out of
the dataIdentifier range reserved for this service (F2xx hex, refer to C.1 for allowed periodicDataIdentifier
values), e.g. the periodicDataIdentifier E3 hex used in this service is the dataIdentifier F2E3 hex.

The format and definition of the dataRecord shall be vehicle-manufacturer-specific and may include analogue
input and output signals, digital input and output signals, internal data and system status information if
supported by the server.

Upon receiving a ReadDataByPeriodicIdentifier request other than stopSending, the server shall check
whether the conditions are correct to execute the service.

A periodicDataIdentifier shall only be supported with a single transmissionMode at a given time. A change to
the schedule of a periodicDataIdentifier shall be performed on reception of a request message with the
transmissionMode parameter set to a new schedule for the same periodicDataIdentifier. Multiple schedules for
different periodicDataIdentifiers shall be supported upon vehicle manufacturer’s request.

IMPORTANT — If the conditions are correct, then the server shall transmit a positive response
message, including only the service identifier. The server shall never transmit a negative response
message once it has accepted the initial request message by responding positively.

Following the initial positive response message the server shall access the data elements of the records
specified by the periodicDataIdentifier parameter(s) and transmit their value in separate
ReadDataByPeriodicIdentifier positive response messages for each periodicDataIdentifier containing the
associated dataRecord parameters.

There are two types of periodic data response messages defined to transmit the periodicDataIdentifier data to
the client following the initial positive response message. These are defined in order to maximize the useable
data portion as provided by certain data link layers:

⎯ response message type #1: including the service identifier, the echo of the periodicDataIdentifier and
the data of the periodicDataIdentifier;

⎯ response message type #2: including the periodicDataIdentifier and the data of the
periodicDataIdentifier.

The mapping of the response message types onto certain data link layers is described in the appropriate
implementation specifications of ISO 14229.

The periodic rate is defined as the time between any two consecutive response messages of the same
periodicDataIdentifier when it is scheduled by this service (see 10.5.5.3 for examples). The specific values that
apply to the defined periodic rates (transmissionMode parameter) and their tolerances are vehicle-
manufacturer-specific.

Upon receiving a ReadDataByPeriodicIdentifier request including the transmissionMode stopSending, the
server shall either stop the periodic transmission of the periodicDataIdentifier(s) contained in the request
message or stop the transmission of all periodicDataIdentifiers if no specific one is specified in the request
message. The response message to this transmissionMode only contains the service identifier.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 113

The server may limit the number of periodicDataIdentifiers that can be simultaneously supported, as agreed
upon by the vehicle manufacturer and system supplier. Exceeding the maximum number of
periodicDataIdentifiers that can be simultaneously supported shall result in a single negative response and
none of the periodicDataIdentifiers in that request shall be scheduled. Repetition of the same
periodicDataIdentifier in a single request message is not allowed and the server shall ignore them all except
one periodicDataIdentifer if the client breaks this rule.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.3 in the event that those addressing methods are implemented for this service.

10.5.2 Request message

10.5.2.1 Request message definition

Table 161 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDataByPeriodicIdentifier Request Service Id M 2A RDBPI

#2 transmissionMode M 00-FF TM

#3 periodicDataIdentifier[] #1 Ca 00-FF PDID1

: : : : :

#m+2 periodicDataIdentifier[] #m U 00-FF PDIDm

a C is the first periodicDataIdentifier and it is mandatory that it be present in the request message if the transmissionMode is equal to
sendAtSlowRate, sendAtMediumRate or sendAtFastRate. In case the transmissionMode is equal to stopSending there can either be no
periodicDataIdentifier present in order to stop all scheduled periodicDataIdentifier or the client can explicitly specify one or more
periodicDataIdentifier(s) to be stopped.

10.5.2.2 Request message sub-function parameter $Level (LEV_) definition

This service does not use a sub-function parameter.

10.5.2.3 Request message data parameter definition

The following data parameters are defined for this service.

Table 162 — Request message data parameter definition

Definition

transmissionMode

This parameter identifies the transmission rate of the requested periodicDataIdentifiers to be used by the server (see
C.4).

periodicDataIdentifier (#1 to #m)

This parameter identifies the server data record(s) that are being requested by the client (see C.1 and service description
above for a detailed parameter definition). It shall be possible to request multiple periodicDataIdentifiers with a single
request.

ISO 14229:2006(E)

114 © ISO 2006 – All rights reserved

10.5.3 Positive response message

10.5.3.1 Positive response message definition

A distinction must be made between the initial positive response message, which indicates that the server
accepts the service, and subsequent positive response messages, which include periodicDataIdentifier data.

Table 163 defines the initial positive response message to be transmitted by the server when it accepts the
request.

Table 163 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDataByPeriodicIdentifier Response Service Id M 6A RDBPIPR

There are two types of periodic data response messages defined to transmit the periodicDataIdentifier data to
the client in order to maximize the useable data portion provided by certain data link layers:

⎯ response message type #1: including the service identifier, the echo of the periodicDataIdentifier and
the data of the periodicDataIdentifier;

⎯ response message type #2: including the periodicDataIdentifier and the data of the
periodicDataIdentifier.

A single server shall only support one type of response message.

The data of a periodicDataIdentifier is transmitted periodically (with updated data) at a rate determined by the
transmissionMode parameter of the request.

After the initial positive response, for each supported periodicDataIdentifier in the request the server shall start
sending a single periodic response message of either type #1 or type #2 as defined below in Tables 164
and 165.

Table 164 — Periodic message data definition — type #1

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDataByPeriodicIdentifier Response Service Id M 6A RDBPIPR

#2 periodicDataIdentifier M 00-FF PDID

#3
:

#k+2

dataRecord[] = [
data#1
:
data#k]

M
:
U

00-FF

:
00-FF

DREC_
DATA_1

:
DATA_k

Table 165 — Periodic message data definition — type #2

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 periodicDataIdentifier M 00-FF PDID

#2
:

#k+2

dataRecord[] = [
data#1
:
data#k]

M
:
U

00-FF

:
00-FF

DREC_
DATA_1

:
DATA_k

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 115

10.5.3.2 Positive response message data parameter definition

This service does not support response message data parameters in the positive response message.

Table 166 defines the periodic message data parameters of the defined periodic data response message
types.

Table 166 — Periodic message data parameter definition

Definition

periodicDataIdentifier

This parameter references a periodicDataIdentifier from the request message.

dataRecord

This parameter is used by the ReadDataByPeriodicIdentifier positive response message to provide the requested data
record values to the client. The content of the dataRecord is not defined in this document and is vehicle-manufacturer-
specific.

10.5.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 167.

Table 167 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 This response code shall be sent if the length of the request message is invalid.

22 conditionsNotCorrect U CNC

 This response code shall be sent if the operating conditions of the server to perform
the required action are not met. This could occur, for examples, if the client requests
periodicDataIdentifiers with different transmissionModes and the server does not
support multiple transmissionModes simultaneously.

31 requestOutOfRange M ROOR

 This code shall be sent if

1) none of the requested periodicDataIdentifier values are supported by the device,

2) the client exceeded the maximum number of periodicDataIdentifiers allowed to
be requested at a time,

3) the specified transmissionMode is not supported by the device.

33 securityAccessDenied M SAD

 This code shall be sent if the periodicDataIdentifier is secured and the server is not in
an unlocked state.

10.5.5 Message flow example ReadDataByPeriodicIdentifier

10.5.5.1 Assumptions

This subclause specifies the conditions to be fulfilled for the example to perform a
ReadDataByPeriodicIdentifier service. The client may request periodicDataIdentifier data at any time,
independent of the status of the server.

ISO 14229:2006(E)

116 © ISO 2006 – All rights reserved

The periodicDataIdentifier examples below are specific to a powertrain device (e.g. engine control module).
Refer to ISO/TR 15031-2 for further details regarding accepted terms/definitions/acronyms for
emissions-related systems.

The example demonstrates requesting of multiple dataIdentifiers with a single request [where
periodicDataIdentifier E3 hex (= dataIdentifier F2E3 hex) contains engine coolant temperature, throttle
position, engine speed and vehicle speed sensor, and periodicDataIdentifier 24 hex (= dataIdentifier F224
hex) contains battery positive voltage, manifold absolute pressure, mass air flow, vehicle barometric pressure
and calculated load value].

The client requests the transmission at medium rate and after a certain amount of time retrieving the periodic
data the client stops the transmission of the periodicDataIdentifier E3 hex only.

For the examples, it is assumed that response message type #1 is used to transmit the data of the
periodicDataIdentifier.

10.5.5.2 Example — Read multiple periodicDataIdentifiers E3 hex and 24 hex at medium rate

10.5.5.2.1 Step #1 — Request periodic transmission of the periodicDataIdentifiers

Table 168 — ReadDataByPeriodicIdentifier request message flow example — step #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByPeriodicIdentifier request SID 2A RDBPI

#2 transmissionMode = sendAtMediumRate 03 TM_SAMR

#3 periodicDataIdentifier #1 E3 PDID1

#4 periodicDataIdentifier #2 24 PDID2

Table 169 — ReadDataByPeriodicIdentifier initial positive response message flow example — step #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByPeriodicIdentifier response SID 6A RDBPIPR

Table 170 — ReadDataByPeriodicIdentifier subsequent positive response message #1 flows — step #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByPeriodicIdentifier response SID 6A RDBPIPR

#2 periodicDataIdentifier #1 E3 PDID1

#3 dataRecord [data#1] = ECT A6 DREC_DATA_1

#4 dataRecord [data#2] = TP 66 DREC_DATA_2

#5 dataRecord [data#3] = RPM 07 DREC_DATA_3

#6 dataRecord [data#4] = RPM 50 DREC_DATA_4

#7 dataRecord [data#5] = VSS 00 DREC_DATA_5

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 117

Table 171 — ReadDataByPeriodicIdentifier subsequent positive response message #2 flows — step #1

Message direction: Server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByPeriodicIdentifier response SID 6A RDBPIPR

#2 periodicDataIdentifier #1 24 PDID2

#3 dataRecord [data#1] = B+ 8C DREC_DATA_1

#4 dataRecord [data#2] = MAP 20 DREC_DATA_2

#5 dataRecord [data#3] = MAF 1A DREC_DATA_3

#6 dataRecord [data#4] = BARO 63 DREC_DATA_4

#7 dataRecord [data#5] = LOAD 4A DREC_DATA_5

The server transmits the above shown subsequent response messages at the medium rate as applicable to
the server.

10.5.5.2.2 Step #2 — Stop the transmission of the periodicDataIdentifiers

Table 172 — ReadDataByIdentifier request message flow example — step #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByPeriodicIdentifier request SID 2A RDBPI

#2 transmissionMode = stopSending 04 TM_SS

#3 periodicDataIdentifier #1 E3 PDID1

Table 173 — ReadDataByIdentifier positive response message flow example — step #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByPeriodicIdentifier response SID 6A RDBPIPR

The server stops the transmission of the periodicDataIdentifier E3 hex only. The periodicDataIdentifier 24 hex
is still transmitted at the server medium rate.

10.5.5.3 Graphical and tabular example of ReadDataByPeriodicIdentifier service periodic schedule
rates

This subclause contains two examples of scheduled periodic data. Each example contains a graphical and a
tabular example of the ReadDataByPeriodicIdentifier (2A hex) service. The first example is based on the
example given in 10.5.5.2. The examples contain a graphical depiction of which messages (request/response)
are transmitted between the client and the server application, followed by a table which shows a possible
implementation of a server periodic scheduler, its variables and how they change each time the background
function that checks the periodic scheduler is executed.

ISO 14229:2006(E)

118 © ISO 2006 – All rights reserved

In the examples below, the following information is given.

⎯ The fast rate is 25 ms and the medium rate is 300 ms.

⎯ The periodic scheduler is checked every 12,5 ms, which means that the periodic scheduler background
function is called (polled) with this period.

⎯ The periodic scheduler can hold a maximum of four scheduled items.

⎯ It is possible to send a ReadDataByPeriodicIdentifier response containing a periodicRecordIdentifier any
time its counter has expired.

Since the periodic scheduler poll rate is 12,5 ms, the fast-rate loop counter would be set to 2 [this value is
based on the scheduled rate (25 ms) divided by the periodic scheduler poll rate (12,5 ms) or 25/12,5] each
time a fast-rate periodicRecordIdentifier is sent and the medium-rate loop counter would be reset to 24
(scheduled rate divided by the periodic scheduler poll rate or 300/12,5) each time a medium-rate
periodicRecordIdentifier is sent.

10.5.5.3.1 Example #1 — Read multiple periodicDataIdentifiers E3 hex and 24 hex at medium rate

This example is based on the example given in 10.5.5.2. At t = 0,0 ms, the client begins sending the request
to schedule the two periodicDataIdentifiers at the medium rate. For the purposes of this example, the server
receives the request and executes the periodic scheduler background function the first time t = 25,0 ms.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 119

Key

A ReadDataByPeriodicIdentifier (2A, 02, F2E3, F224 hex) request message (sendAtMediumRate)
B ReadDataByPeriodicIdentifier positive response message (6A hex, no data included)
C ReadDataByPeriodicIdentifier positive response message (6A, E3, xx, …, xx hex)
D ReadDataByPeriodicIdentifier positive response message (6A, 24, xx, …, xx hex)

Figure 17 — Example #1 — periodicDataIdentifiers scheduled at medium rate (300 ms)

Table 174 shows a possible implementation of the periodic scheduler in the server. The table contains the
periodic scheduler variables and how they change each time the background function that checks the periodic
scheduler is executed.

ISO 14229:2006(E)

120 © ISO 2006 – All rights reserved

Table 174 — Example #1 — Periodic scheduler table

t
(ms)

Periodic scheduler
transmit index

Periodic
identifier sent

Periodic scheduler
loop #

Scheduler[0]
Transmit Count

Scheduler[1]
Transmit Count

25,0 0 1 1 0 W 24 0

37,5 1 2 2 23 0 W 24

50,0 0 None 3 22 23

62,5 0 None 4 21 22

75,0 0 None 5 20 21

87,5 0 None 6 19 20

100,0 0 None 7 18 19

112,5 0 None 8 17 18

125,0 0 None 9 16 17

137,5 0 None 10 15 16

150,0 0 None 11 14 15

162,5 0 None 12 13 14

175,0 0 None 13 12 13

187,5 0 None 14 11 12

200,0 0 None 15 10 11

212,5 0 None 16 9 10

225,0 0 None 17 8 9

237,5 0 None 18 7 8

250,0 0 None 19 6 7

262,5 0 None 20 5 6

275,0 0 None 21 4 5

287,5 0 None 22 3 4

300,0 0 None 23 2 3

312,5 0 None 24 1 2

325,0 0 1 25 0 W 24 1

337,5 1 2 26 23 0 W 24

350,0 0 None 27 22 23

362,5 0 None 28 21 22

10.5.5.3.2 Example #2 — Read multiple periodicDataIdentifiers at different periodic rates

In this example, three (3) periodicIdentifiers (for simplicity 01 hex, 02 hex, 03 hex) are scheduled at the fast
rate and then another request is sent for a single periodicDataIdentifier (04 hex) to be scheduled at the
medium rate. For the purposes of this example, the server receives the first ReadDataByPeriodicIdentifier
request (A), sends a positive response (B) without any periodic data and executes the periodic scheduler
background function for the first time at t = 25,0 ms (C). When the second ReadDataByPeriodicIdentifier
request (E) is received, the server sends a positive response (G) without any periodic data and starts
executing the periodic scheduler background function at t = 62,5 ms (H) at a scheduled medium rate of
312,5 ms.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 121

Key

A ReadDataByPeriodicIdentifier (2A, 03, F201, F202, F203 hex) request message (sendAtFastRate)
B ReadDataByPeriodicIdentifier positive response message (6A hex, no data included)
C ReadDataByPeriodicIdentifier positive response message (6A, 01, xx, …, xx hex)
D ReadDataByPeriodicIdentifier positive response message (6A, 02, xx, …, xx hex)
E ReadDataByPeriodicIdentifier (2A, 02, F204 hex) request message (sendAtMediumRate)
F ReadDataByPeriodicIdentifier positive response message (6A, 03, xx, …, xx hex)
G ReadDataByPeriodicIdentifier positive response message (6A hex, no data included)
H ReadDataByPeriodicIdentifier positive response message (6A, 04, xx, …, xx hex)

Figure 18 — Example #2 — periodicDataIdentifiers scheduled at fast (25 ms) and medium rate (300 ms)

ISO 14229:2006(E)

122 © ISO 2006 – All rights reserved

Table 175 shows a possible implementation of the periodic scheduler in the server. The table contains the
periodic scheduler variables and how they change each time the background function that checks the periodic
scheduler is executed.

Table 175 — Example #2 — Periodic scheduler table

t
(ms)

Periodic
scheduler
transmit

index

Periodic
identifier

sent

Periodic
scheduler

loop #

Scheduler[0]
Transmit

Count

Scheduler[1]
Transmit

Count

Scheduler[2]
Transmit

Count

Scheduler[3]
Transmit

Count

25,0 0 1 1 0 W 2 0 0 N/A

37,5 1 2 2 1 0 W 2 0 N/A

50,0 2 3 3 0 1 0 W 2 0

62,5 3 4 4 0 0 1 0 W 24

75,0 0 1 5 0 W 2 0 0 23

87,5 1 2 6 1 0 W 2 0 22

100,0 2 3 7 0 1 0 W 2 21

112,5 3 1 8 0 W 2 0 1 20

125,0 1 2 9 1 0 W 2 0 19

137,5 2 3 10 0 1 0 W 2 18

150,0 3 1 11 0 W 2 0 1 17

162,5 1 2 12 1 0 W 2 0 16

175,0 2 3 13 0 1 0 W 2 15

187,5 3 1 14 0 W 2 0 1 14

200,0 1 2 15 1 0 W 2 0 13

212,5 2 3 16 0 1 0 W 2 12

225,0 3 1 17 0 W 2 0 1 11

237,5 1 2 18 1 0 W 2 0 10

250,0 2 3 19 0 1 0 W 2 9

262,5 3 1 20 0 W 2 0 1 8

275,0 1 2 21 1 0 W 2 0 7

287,5 2 3 22 0 1 0 W 2 6

300,0 3 1 23 0 W 2 0 1 5

312,5 1 2 24 1 0 W 2 0 4

325,0 2 3 25 0 1 0 W 2 3

337,5 3 1 26 0 W 2 0 1 2

350,0 1 2 27 1 0 W 2 0 1

362,5 2 3 28 0 1 0 W 2 0

375,0 3 4 29 0 0 1 0 W 24

387,5 0 1 30 0 W 2 0 0 23

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 123

10.6 DynamicallyDefineDataIdentifier (2C hex) service

10.6.1 Service description

The DynamicallyDefineDataIdentifier service allows the client to dynamically define in a server a data identifier
that can be read via the ReadDataByIdentifier service at a later time.

The intention of this service is to provide the client with the ability to group one or more data elements into a
data superset that can be requested en masse via the ReadDataByIdentifier or ReadDataByPeriodicIdentifier
service. The data elements to be grouped together can be referenced by either

⎯ a source data identifier, a position and size, or

⎯ a memory address and a memory length, or

⎯ a combination of the two methods listed above using multiple requests to define the single data element.
The dynamically defined dataIdentifier will then contain a concatenation of the data parameter definitions.

This service allows greater flexibility in handling ad hoc data needs of the diagnostic application that extend
beyond the information that can be read via statically defined data identifiers, and can also be used to reduce
bandwidth utilization by avoiding overhead penalty associated with frequent request/response transactions.

The definition of the dynamically defined data identifier can either be done via a single request message or via
multiple request messages. This allows for the definition of a single data element referencing source
identifier(s) and memory addresses. The server shall concatenate the definitions for the single data element.
A redefinition of a dynamically defined data identifier can be achieved by clearing the current definition and
starting over with the new definition.

Although this service does not prohibit such functionality, it is not recommended that the client reference one
dynamically defined data record from another, because deletion of the referenced record could create data
consistency problems within the referencing record.

This service also provides the ability to clear an existing dynamically defined data record. Requests to clear a
data record shall be responded to positively if the specified data record identifier is within the range of valid
dynamic data identifiers supported by the server (see C.1 for more details).

The server shall maintain the dynamically defined data record until it is cleared or as specified by the vehicle
manufacturer (e.g. deletion of dynamically defined data records upon session transition or upon power down
of the server).

The server can implement data records in two different ways:

⎯ composite data records containing multiple elemental data records which are not individually referenced;

⎯ unique two-byte identification “tags” or parameter identifier (PID) values for individual, elemental data
records supported within the server (an example elemental data record, or PID, is engine speed or intake
air temperature): this implementation of data records is a subset of a composite data record
implementation because it only references a single elemental data record instead of a data record
including multiple elemental data records.

Both types of implementing of data records are supported by the DynamicallyDefineDataIdentifier service to
define a dynamic data identifier.

⎯ Composite block of data: the position parameter shall reference the starting point in the composite block
of data and the size parameter shall reflect the length of data to be placed in the dynamically defined data
identifier. The tester is responsible for including only a portion of an elemental data record of the
composite block of data in the dynamic data record.

ISO 14229:2006(E)

124 © ISO 2006 – All rights reserved

⎯ Two-byte PID: the position parameter shall be set to one (1) and the size parameter shall reflect the
length of the PID (length of the elemental data record). The tester is responsible to not include only a
portion of the two-byte PID value in the dynamic data record.

The ordering of the data within the dynamically defined data record shall be the same as specified in the client
request message(s). Also, the first position of the data specified in the client’s request shall be oriented such
that it occurs closest to the beginning of the dynamic data record, in accordance with the ordering requirement
mentioned in the preceding sentence.

In addition to the definition of a dynamic data identifier via a logical reference (a record data identifier), this
service provides the capability to define a dynamically defined data identifier via an absolute memory address
and memory length information. This mechanism of defining a dynamic data identifier is recommended to be
used only during the development phase of a server.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.2 in the event that those addressing methods are implemented for this service.

10.6.2 Request message

10.6.2.1 Request message definition

Table 176 — Request message definition — Sub-function = defineByIdentifier

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 DynamicallyDefineDataIdentifier Request Service Id M 2C DDDI

#2

sub-function = [
defineByIdentifier]

M

01

LEV_
DBID

#3
#4

dynamicallyDefinedDataIdentifier[] = [
byte#1 (MSB)
byte#2 (LSB)]

M
M

F2,F3
00-FF

DDDDI_
HB
LB

#5
#6

sourceDataIdentifier[] #1 = [
byte#1 (MSB)
byte#2 (LSB)]

M
M

00-FF
00-FF

SDI_
HB
LB

#7 positionInSourceDataRecord #1 M 01-FF PISDR1

#8 memorySize #1 M 00-FF MS1

: : : : :

#n-3
#n-2

sourceDataIdentifier[] #m = [
byte#1 (MSB)
byte#2 (LSB)]

U
U

00-FF
00-FF

SDI_
HB
LB

#n-1 positionInSourceDataRecord #m U 01-FF PISDRm

#n memorySize #m U 00-FF MSm

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 125

Table 177 — Request message definition — Sub-function = defineByMemoryAddress

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 DynamicallyDefineDataIdentifier Request Service Id M 2C DDDI

#2

sub-function = [
defineByMemoryAddress]

M

02

LEV_
DBMA

#3
#4

dynamicallyDefinedDataIdentifier[] = [
byte#1 (MSB)
byte#2 (LSB)]

M
M

F2,F3
00-FF

DDDDI_
HB
LB

#5 addressAndLengthFormatIdentifier M1
a

 00-FF ALFID

#6
:

#(m-1)+6

memoryAddress[] = [
byte#1 (MSB)
:
byte#m]

M
:

C1
b

00-FF

:
00-FF

MA_
B1
:

Bm

#m+6

:
#m+6+(k-1)

memorySize[] = [
byte#1 (MSB)
:
byte#k]

M
:

C2
c

00-FF

:
00-FF

MS_
B1
:

Bk

: : : : :

#n-k-(m-1)

:
#n-k

memoryAddress[] = [
byte#1 (MSB)
:
byte#m]

U
:

U/C1

00-FF

:
00-FF

MA_
B1
:

Bm

#n-(k-1)

:
#n

memorySize[] = [
byte#1 (MSB)
:
byte#k]

U
:

U/C2

00-FF

:
00-FF

MS_
B1
:

Bk
a M1, the addressAndLengthFormatIdentifier parameter, is only present once at the very beginning of the request message and
defines the length of the address and length information for each memory location reference throughout the whole request message.
b The presence of the C1 parameter depends on the address length information parameter of the addressAndLengthFormatIdentifier.
c The presence of the C2 parameter depends on the memory size length information of the addressAndLengthFormatIdentifier.

Table 178 — Request message definition — Sub-function = clearDynamicallyDefinedDataIdentifier

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 DynamicallyDefineDataIdentifier Request Service Id M 2C DDDI

#2

sub-function = [
clearDynamicallyDefinedDataIdentifier]

M

03

LEV_
CDDDID

#3
#4

dynamicallyDefinedDataIdentifier[] = [
byte#1 (MSB)
byte#2 (LSB)]

Ca
C

F2,F3
00-FF

DDDDI_
HB
LB

a The presence of the C parameter requires the server to clear the dynamicallyDefinedDataIdentifier included in byte#1 and byte#2.
If the parameter is not present all dynamicallyDefinedDataIdentifier in the server shall be cleared.

ISO 14229:2006(E)

126 © ISO 2006 – All rights reserved

10.6.2.2 Request message sub-function parameter $Level (LEV_) definition

The sub-parameters defined as valid for the request message of this service are indicated in Table 179
[suppressPosRspMsgIndicationBit (bit 7) not shown].

Table 179 — Request message sub-function parameter definition

Hex
(bit 6-0) Description Cvt Mnemonic

00 ISOSAEReserved M ISOSAERESRVD

 This value is reserved by this document for future definition.

01 defineByIdentifier U DBID

 This value shall be used to specify to the server that definition of the dynamic data
identifier shall occur via a data identifier reference.

02 defineByMemoryAddress U DBMA

 This value shall be used to specify to the server that definition of the dynamic data
identifier shall occur via an address reference.

Note that this sub-function shall only be used during the development phase of the
server.

03 clearDynamicallyDefinedDataIdentifier U CDDDI

 This value shall be used to clear the specified dynamic data identifier. Note that the
server shall positively respond to a clear request from the client, even if the specified
dynamic data identifier doesn’t exist at the time of the request. However, the specified
dynamic data identifier shall be within a valid range (see C.1 for allowable ranges). If
the specified dynamic data identifier is being reported periodically at the time of the
request, the dynamic identifier shall first be stopped and then cleared.

04-7F ISOSAEReserved M ISOSAERESRVD

 This range of values is reserved by this document for future definition.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 127

10.6.2.3 Request message data parameter definition

The following data parameters are defined for this service.

Table 180 — Request message data parameter definition

Definition

dynamicallyDefinedDataIdentifier

This parameter specifies how the dynamic data record which is being defined by the client will be referenced in future
calls to the service ReadDataByIdentifier or ReadDataByPeriodicDataIdentifier. The dynamicallyDefinedDataIdentifier
shall be handled as a dataIdentifier in the ReadDataByIdentifier service (see C.1 for further details). It shall be
handled as a periodicRecordIdentifier in the ReadDataByPeriodicDataIdentifier service (see the
ReadDataByPeriodicDataIdentifier service for requirements on the value of this parameter in order to be able to request
the dynamically defined data identifier periodically).

sourceDataIdentifier

This parameter is only present for sub-function = defineByIdentifier. This parameter logically specifies the source of
information to be included into the dynamic data record. For example, this could be a 2/3-byte PID identifier used to
reference engine speed or a 2/3-byte data record identifier used to reference a composite block of information containing
engine speed, vehicle speed, intake air temperature, etc. (see C.1 for further details).

positionInSourceDataRecord

This parameter is only present for sub-function = defineByIdentifier. This one-byte parameter is used to specify the
starting byte position of the excerpt of the source data record to be included in the dynamic data record. A position of one
(1) shall reference the first byte of the data record referenced by the sourceDataIdentifier.

addressAndLengthFormatIdentifier

This parameter is a one-byte value with each nibble encoded separately (see G.1 for example values):

— bit 7 - 4: length (number of bytes) of the memorySize parameter(s);

— bit 3 - 0: length (number of bytes) of the memoryAddress parameter(s).

memoryAddress

This parameter is only present for sub-function = defineByMemoryAddress. This parameter specifies the memory source
address of information to be included into the dynamic data record. The number of bytes used for this address is defined
by the low nibble (bit 3 - 0) of the addressFormatIdentifier.

memorySize

This parameter is used to specify the total number of bytes from the source data record/memory address that are to be
included in the dynamic data record.

In case of sub-function = defineByIdentifier, then the positionInSourceDataRecord parameter is used in addition to
specify the starting position in the source data identifier from which the memorySize applies. The number of bytes used
for this size is one (1) byte.

In case of sub-function = defineByMemoryAddress, then this parameter reflects the number of bytes to be included in the
dynamically defined data identifier starting at the specified memoryAddress. The number of bytes used for this size is
defined by the high nibble (bit 7 - 4) of the addressFormatIdentifier.

ISO 14229:2006(E)

128 © ISO 2006 – All rights reserved

10.6.3 Positive response message

10.6.3.1 Positive response message definition

Table 181 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 DynamicallyDefineDataIdentifier Response Service Id M 6C DDDIPR

#2 definitionType M 00-7F DM

#3
#4

dynamicallyDefinedDataIdentifier [] = [
byte#1 (MSB)
byte#2 (LSB)]

Ca

C

F2,F3
00-FF

DDDDI_
HB
LB

a The presence of the C parameter is required if the dynamicallyDefinedDataIdentifier parameter is present in the request message,
otherwise the parameter shall not be included.

10.6.3.2 Positive response message data parameter definition

Table 182 — Response message data parameter definition

Definition

definitionType

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message.

dynamicallyDefinedDataIdentifier

This parameter is an echo of the data parameter dynamicallyDefinedDataIdentifier from the request message.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 129

10.6.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 183.

Table 183 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS

 This response code shall be sent if the sub-function parameter is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect M CNC

 This response code shall be sent if the operating conditions of the server to perform
the required action are not met.

31 requestOutOfRange M ROOR

 This response code shall be sent if:

1) any data identifier (dynamicallyDefinedDataIdentifier or any sourceDataIdentifier)
in the request message is not supported/invalid;

2) the positionInSourceDataRecord is incorrect (less than 1 or greater than the
maximum allowed by the server);

3) any memory address in the request message is not supported in the server;

4) the specified memorySize is invalid;

5) the amount of data to be packed into the dynamic data identifier exceeds the
maximum allowed by the server;

6) the specified addressAndLengthFormatIdentifier is not valid.

33 securityAccessDenied M SAD

 This code shall be sent if:

1) any data identifier (dynamicallyDefinedDataIdentifier or any
sourceDataIdentifier) in the request message is secured and the server is not in
an unlocked state;

2) any memory address in the request message is secured and the server is not in
an unlocked state.

10.6.5 Message flow examples DynamicallyDefineDataIdentifier

10.6.5.1 Assumptions

This subclause specifies the conditions to be fulfilled for the example to perform a
DynamicallyDefineDataIdentifier service.

The service in this example is not limited by any restriction of the server.

In the first example, the server supports two-byte identifiers (PIDs) which reference a single data information.
The example builds a dynamic data identifier using the defineByIdentifier method and then sends a
ReadDataByIdentifier request to read the dynamic data identifier which has just been defined.

In the second example, the server supports data identifiers which reference a composite block of data
containing multiple data information. The example builds a dynamic identifier also using the defineByIdentifier
method and sends a ReadDataByIdentifier request to read the data identifier whihc has just been defined.

ISO 14229:2006(E)

130 © ISO 2006 – All rights reserved

The third example builds a dynamic data identifier using the defineByMemoryAddress method and sends a
ReadDataByIdentifier request to read the data identifier which has just been defined.

In the fourth example, the server supports data identifiers which reference a composite block of data
containing multiple data information. The example builds a dynamic data identifier using the defineByIdentifier
method and then uses the ReadDataByPeriodicIdentifier service to request the dynamically defined data
identifier to be sent periodically by the server.

The fifth example demonstrates the deletion of a dynamically defined data identifier.

Table 184 shall be used for the examples below. Note that the values being reported may change over time
on a real vehicle, but are shown to be constants for the sake of clarity.

Refer to ISO 15031-2 for further details regarding accepted terms/definitions/acronyms for emissions-related
systems.

For all examples, the client requests a response message by setting the suppressPosRspMsgIndicationBit
(bit 7 of the sub-function parameter) to “FALSE” (‘0’).

Table 184 — Composite data blocks — DataIdentifier definitions

Data identifier
(block, hex) Data byte Data record contents Byte value

(hex)

#1 dataRecord [data#1] = B+ 8C

#2 dataRecord [data#2] = ECT A6

#3 dataRecord [data#3] = TP 66

#4 dataRecord [data#4] = RPM 07

#5 dataRecord [data#5] = RPM 50

#6 dataRecord [data#6] = MAP 20

#7 dataRecord [data#7] = MAF 1A

#8 dataRecord [data#8] = VSS 00

#9 dataRecord [data#9] = BARO 63

#10 dataRecord [data#10] = LOAD 4A

#11 dataRecord [data#11] = IAC 82

010A

#12 dataRecord [data#12] = APP 7E

#1 dataRecord [data#1] = SPARKADV 00
050B

#2 dataRecord [data#2] = KS 91

Table 185 — Elemental data records - PID definitions

Data identifier
(PID, hex) Data byte Data record contents Byte value

(hex)

#1 EOT (MSB) 4C
1234

#2 EOT (LSB) 36

5678 #1 AAT 4D

#1 EOL (MSB) 49

#2 EOL 21

#3 EOL 00
9ABC

#4 EOL (LSB) 17

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 131

Table 186 — Memory data records — Memory Address definitions

Memory address
(hex) Data byte Data record contents Byte value

(hex)

#1 dataRecord [data#1] = B+ 8C

#2 dataRecord [data#2] = ECT A6

#3 dataRecord [data#3] = TP 66

#4 dataRecord [data#4] = RPM 07

#5 dataRecord [data#5] = RPM 50

#6 dataRecord [data#6] = MAP 20

#7 dataRecord [data#7] = MAF 1A

#8 dataRecord [data#8] = VSS 00

#9 dataRecord [data#9] = BARO 63

#10 dataRecord [data#10] = LOAD 4A

#11 dataRecord [data#11] = IAC 82

21091968

#12 dataRecord [data#12] = APP 7E

#1 dataRecord [data#1] = SPARKADV 00
13101994

#2 dataRecord [data#2] = KS 91

10.6.5.2 Example #1 — DynamicallyDefineDataIdentifier, sub-function = defineByIdentifier

This example will build up a dynamically defined data identifier (DDDDI F301 hex) containing engine oil
temperature, ambient air temperature and engine oil level using the two-byte PIDs as the reference for the
required data.

Table 187 — DynamicallyDefineDataIdentifier request DDDI F301 hex message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier request SID 2C DDDI

#2 sub-function = defineByIdentifier,
suppressPosRspMsgIndicationBit = FALSE

01 DBID

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 01 DDDDI_B2

#5 sourceDataIdentifier #1 [byte#1] (MSB) - Engine Oil Temperature 12 SDI_B1

#6 sourceDataIdentifier #1 [byte#2] 34 SDI_B2

#7 positionInSourceDataRecord #1 1 PISDR#1

#8 memorySize #1 2 MS#1

#9 sourceDataIdentifier #2 [byte#1] (MSB) - Ambient Air Temperature 56 SDI_B1

#10 sourceDataIdentifier #2 [byte#2] 78 SDI_B2

#11 positionInSourceDataRecord #2 1 PISDR#2

#12 memorySize #2 1 MS#2

#13 sourceDataIdentifier #3 [byte#1] (MSB) - Engine Oil Level 9A SDI_B1

#14 sourceDataIdentifier #3 [byte#2] BC SDI_B2

#15 positionInSourceDataRecord #3 1 PISDR#3

#16 memorySize #3 4 MS#3

ISO 14229:2006(E)

132 © ISO 2006 – All rights reserved

Table 188 — DynamicallyDefineDataIdentifier positive response DDDI F301 hex
message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier response SID 6C DDDIPR

#2 definitionMode = defineByIdentifier 01 DBID

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 01 DDDDI_B2

Table 189 — ReadDataByIdentifier request DDDI F301 hex message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier request SID 22 RDBI

#2 dataIdentifier [byte#1] (MSB) F3 DID_B1

#3 dataIdentifier [byte#2] (LSB) 01 DID_B2

Table 190 — ReadDataByIdentifier positive response DDDI F301 hex message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier response SID 62 RDBIPR

#2 dataIdentifier [byte#1] (MSB) F3 DID_B1

#3 dataIdentifier [byte#2] (LSB) 01 DID_B2

#4 dataRecord [data#1] = EOT 4C DREC_DATA_1

#5 dataRecord [data#2] = EOT 36 DREC_DATA_2

#6 dataRecord [data#3] = AAT 4D DREC_DATA_3

#7 dataRecord [data#4] = EOL 49 DREC_DATA_4

#8 dataRecord [data#5] = EOL 21 DREC_DATA_5

#9 dataRecord [data#6] = EOL 00 DREC_DATA_6

#10 dataRecord [data#7] = EOL 17 DREC_DATA_7

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 133

10.6.5.3 Example #2 — DynamicallyDefineDataIdentifier — sub-function = defineByIdentifier

This example will build up a dynamic data identifier (DDDI F302 hex) containing engine coolant temperature
(from data record 010A hex), engine speed (from data record 010A hex), IAC Pintle Position (from data record
010A hex) and knock sensor (from data record 050B hex).

Table 191 — DynamicallyDefineDataIdentifier request DDDI F302 hex message flow example #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier request SID 2C DDDI

#2 sub-function = defineByIdentifier,
suppressPosRspMsgIndicationBit = FALSE

01 DBID

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 02 DDDDI_B2

#5 sourceDataIdentifier #1 [byte#1] (MSB) 01 SDI_B1

#6 sourceDataIdentifier #1 [byte#2] (LSB) 0A SDI_B2

#7 positionInSourceDataRecord #1 - Engine Coolant Temperature 02 PISDR#1

#8 memorySize #1 01 MS#1

#9 sourceDataIdentifier #2 [byte#1] (MSB) 01 SDI_B1

#10 sourceDataIdentifier #2 [byte#2] (LSB) 0A SDI_B2

#11 positionInSourceDataRecord #2 - Engine Speed 04 PISDR#2

#12 memorySize #2 02 MS#2

#13 sourceDataIdentifier #3 [byte#1] (MSB) 01 SDI_B1

#14 sourceDataIdentifier #3 [byte#2] (LSB) 0A SDI_B2

#15 positionInSourceDataRecord #3 – Idle Air Control 0B PISDR#3

#16 memorySize #3 01 MS#3

#17 sourceDataIdentifier #4 [byte#1] (MSB) 05 SDI_B1

#18 sourceDataIdentifier #4 [byte#2] (LSB) 0B SDI_B2

#19 positionInSourceDataRecord #4 - Knock Sensor 02 PISDR#4

#20 memorySize #4 01 MS#4

Table 192 — DynamicallyDefineDataIdentifier positive response DDDI F302 hex
message flow example #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier response SID 6C DDDIPR

#2 definitionMode = defineByIdentifier 01 DBID

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 02 DDDDI_B2

ISO 14229:2006(E)

134 © ISO 2006 – All rights reserved

Table 193 — ReadDataByIdentifier request DDDI F302 hex message flow example #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier request SID 22 RDBI

#2 dataIdentifier [byte#1] (MSB) F3 DID_B1

#3 dataIdentifier [byte#2] (LSB) 02 DID_B2

Table 194 — ReadDataByIdentifier positive response DDDI F302 hex message flow example #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier response SID 62 RDBIPR

#2 dataIdentifier [byte#1] (MSB) F3 DID_B1

#3 dataIdentifier [byte#2] (LSB) 02 DID_B2

#4 dataRecord [data#1] = ECT A6 DREC_DATA_1

#5 dataRecord [data#2] = RPM 07 DREC_DATA_2

#6 dataRecord [data#3] = RPM 50 DREC_DATA_3

#7 dataRecord [data#4] = IAC 82 DREC_DATA_4

#8 dataRecord [data#5] = KS 91 DREC_DATA_5

10.6.5.4 Example #3 — DynamicallyDefineDataIdentifier — sub-function = defineByMemoryAddress

This example will build up a dynamic data identifier (DDDI F302 hex) containing engine coolant temperature
(from a memory block starting at memory address 21091969 hex), engine speed (from a memory block
starting at memory address 2109196B hex) and knock sensor (from a memory block starting at memory
address 13101995 hex).

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 135

Table 195 — DynamicallyDefineDataIdentifier request DDDI F302 hex message flow example #3

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier request SID 2C DDDI

#2 sub-function = defineByMemoryAddress,
suppressPosRspMsgIndicationBit = FALSE

02 DBMA

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 02 DDDDI_B2

#5 addressAndLengthFormatIdentifier 14 ALFID

#6 memoryAddress #1 [byte#1] (MSB) - Engine coolant temperature 21 MA_1_B1

#7 memoryAddress #1 [byte#2] 09 MA_1_B2

#8 memoryAddress #1 [byte#3] 19 MA_1_B3

#9 memoryAddress #1 [byte#4] 69 MA_1_B4

#10 memorySize #1 01 MS#1

#11 memoryAddress #2 [byte#1] (MSB) - Engine speed 21 MA_2_B1

#12 memoryAddress #2 [byte#2] 09 MA_2_B2

#13 memoryAddress #2 [byte#3] 19 MA_2_B3

#14 memoryAddress #2 [byte#4] 6B MA_2_B4

#15 memorySize #2 02 MS#2

#16 memoryAddress #3 [byte#1] (MSB) - Knock sensor 13 MA_3_B1

#17 memoryAddress #3 [byte#2] 10 MA_3_B2

#18 memoryAddress #3 [byte#3] 19 MA_3_B3

#19 memoryAddress #3 [byte#4] 95 MA_3_B4

#20 memorySize #3 01 MS#3

Table 196 — DynamicallyDefineDataIdentifier positive response DDDI F302 hex
message flow example #3

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier response SID 6C DDDIPR

#2 definitionMode = defineByMemoryAddress 02 DBMA

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 02 DDDDI_B2

Table 197 — ReadDataByIdentifier request DDDI F302 hex message flow example #3

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier request SID 22 RDBI

#2 dataIdentifier [byte#1] (MSB) F3 DID_B1

#3 dataIdentifier [byte#2] (LSB) 02 DID_B2

ISO 14229:2006(E)

136 © ISO 2006 – All rights reserved

Table 198 — ReadDataByIdentifier positive response DDDI F302 hex message flow example #3

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier response SID 62 RDBIPR

#2 dataIdentifier [byte#1] (MSB) F3 DID_B1

#3 dataIdentifier [byte#2] (LSB) 02 DID_B2

#4 dataRecord [data#1] = ECT A6 DREC_DATA_1

#5 dataRecord [data#2] = RPM 07 DREC_DATA_2

#6 dataRecord [data#3] = RPM 50 DREC_DATA_3

#7 dataRecord [data#4] = KS 91 DREC_DATA_4

10.6.5.5 Example #4 — DynamicallyDefineDataIdentifier — sub-function = defineByIdentifier

This example will build up a dynamic data identifier (DDDI F2E7 hex) containing engine coolant temperature
(from data record 010A hex), engine speed (from data record 010A hex) and knock sensor (from data record
050B hex).

The value for the dynamic data identifier is chosen out of the range that can be used to request data
periodically. Following the definition of the dynamic data identifier the client requests the data identifier to be
sent periodically (fast rate).

Table 199 — DynamicallyDefineDataIdentifier request DDDI F2E7 hex message flow example #4

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier request SID 2C DDDI

#2 sub-function = defineByIdentifier,
suppressPosRspMsgIndicationBit = FALSE

01 DBID

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F2 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) E7 DDDDI_B2

#5 sourceDataIdentifier #1 [byte#1] (MSB) 01 SDI_B1

#6 sourceDataIdentifier #1 [byte#2] (LSB) 0A SDI_B2

#7 positionInSourceDataRecord #1 - Engine coolant temperature 02 PISDR

#8 memorySize #1 01 MS#1

#9 sourceDataIdentifier #2 [byte#1] (MSB) 01 SDI_B1

#10 sourceDataIdentifier #2 [byte#2] (LSB) 0A SDI_B2

#11 positionInSourceDataRecord #2 - Engine speed 04 PISDR

#12 memorySize #2 02 MS#2

#13 sourceDataIdentifier #3 [byte#1] (MSB) 05 SDI_B1

#14 sourceDataIdentifier #3 [byte#2] (LSB) 0B SDI_B2

#15 positionInSourceDataRecord #3 - Knock Sensor 02 PISDR

#16 memorySize #3 01 MS#3

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 137

Table 200 — DynamicallyDefineDataIdentifier positive response DDDI F2E7 hex
message flow example #4

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier response SID 6C DDDIPR

#2 definitionMode = defineByIdentifier 01 DBID

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F2 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) E7 DDDDI_B2

Table 201 — ReadDataByPeriodicIdentifier request DDDI F2E7 hex message flow example #4

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByPeriodicIdentifier request SID 2A RDBPI

#2 transmissionMode = sendAtFastRate 04 TM

#3 PeriodicDataIdentifier E7 PDID

Table 202 — ReadDataByPeriodicIdentifier initial positive message flow example #4

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier response SID 6A RDBPIPR

Table 203 — ReadDataByPeriodicIdentifier positive response #1 DDDI F2E7 hex
message flow example #4

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByPeriodicIdentifier response SID 6A RDBPIPR

#2 PeriodicDataIdentifier E7 PDID

#3 dataRecord [data#1] = ECT A6 DREC_DATA_1

#4 dataRecord [data#2] = RPM 07 DREC_DATA_2

#5 dataRecord [data#3] = RPM 50 DREC_DATA_3

#6 dataRecord [data#4] = KS 91 DREC_DATA_4

ISO 14229:2006(E)

138 © ISO 2006 – All rights reserved

Table 204 — ReadDataByPeriodicIdentifier positive response #n DDDI F2E7 hex
message flow example #4

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByPeriodicIdentifier response SID 6A RDBPIPR

#2 periodicDataIdentifier E7 PDID

#3 dataRecord [data#1] = ECT A6 DREC_DATA_1

#4 dataRecord [data#2] = RPM 07 DREC_DATA_2

#5 dataRecord [data#3] = RPM 55 DREC_DATA_3

#6 dataRecord [data#4] = KS 98 DREC_DATA_4

10.6.5.6 Example #5 — DynamicallyDefineDataIdentifier — sub-function = clearDynamicallyDefined-
DataIdentifier

This example demonstrates the clearing of a dynamicallyDefinedDataIdentifier and assumes that DDDI F303
hex exists at the time of the request.

Table 205 — DynamicallyDefineDataIdentifier request clear DDDI F303 hex message flow example #5

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier request SID 2C DDDI

#2 sub-function = clearDynamicallyDefinedDataIdentifier,
suppressPosRspMsgIndicationBit = FALSE

03 CDDDI

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 03 DDDDI_B2

Table 206 — DynamicallyDefineDataIdentifier positive response clear DDDI F303 hex
message flow example #5

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier response SID 6C DDDIPR

#2 definitionMode = clearDynamicallyDefinedDataIdentifier 03 CDDDI

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 03 DDDDI_B2

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 139

10.6.5.7 Example #6 — DynamicallyDefineDataIdentifier, concatenation of definitions
(defineByIdentifier/ defineByAddress)

This example will build up a dynamic data identifier (DDDDI F301 hex) using the two definition types. The
following list shows the order of the data in the dynamically defined data identifier (implicit order of request
messages to define the dynamic data identifier):

⎯ 1st portion: engine oil temperature and ambient air temperature referenced by two-byte PIDs
(defineByIdentifier);

⎯ 2nd portion: engine coolant temperature and engine speed referenced by memory addresses;

⎯ 3rd portion: engine oil level referenced by two-byte PIDs.

10.6.5.7.1 Step #1 — DynamicallyDefineDataIdentifier — sub-function = defineByIdentifier (1st portion)

Table 207 — DynamicallyDefineDataIdentifier request DDDDI F301 hex message flow example #6 —
definition of 1st portion (defineByIdentifier)

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier request SID 2C DDDI

#2 sub-function = defineByIdentifier,
suppressPosRspMsgIndicationBit = FALSE

01 DBID

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 01 DDDDI_B2

#5 sourceDataIdentifier #1 [byte#1] (MSB) - Engine oil temperature 12 SDI_B1

#6 sourceDataIdentifier #1 [byte#2] 34 SDI_B2

#7 positionInSourceDataRecord #1 1 PISDR#1

#8 memorySize #1 2 MS#1

#9 sourceDataIdentifier #2 [byte#1] (MSB) - Ambient air temperature 56 SDI_B1

#10 sourceDataIdentifier #2 [byte#2] (LSB) 78 SDI_B2

#11 positionInSourceDataRecord #2 1 PISDR#2

#12 memorySize #2 1 MS#2

Table 208 — DynamicallyDefineDataIdentifier positive response DDDDI F301 hex message flow
example #6 — definition of first portion (defineByIdentifier)

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier response SID 6C DDDIPR

#2 definitionMode = defineByIdentifier 01 DBID

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 01 DDDDI_B2

ISO 14229:2006(E)

140 © ISO 2006 – All rights reserved

10.6.5.7.2 Step #2 — DynamicallyDefineDataIdentifier — sub-function = defineByMemoryAddress
(2n

nd portion)

Table 209 — DynamicallyDefineDataIdentifier request DDDDI F301 hex message flow example #6 —
definition of 2nd portion (defineByMemoryAddress)

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier request SID 2C DDDI

#2 sub-function = defineByMemoryAddress,
suppressPosRspMsgIndicationBit = FALSE

02 DBMA

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 01 DDDDI_B2

#5 addressAndLengthFormatIdentifier 14 ALFID

#6 memoryAddress #1 [byte#1] (MSB) - Engine coolant temperature 21 MA_B1 #1

#7 memoryAddress #1 [byte#2] 09 MA_B2 #1

#8 memoryAddress #1 [byte#3] 19 MA_B3 #1

#9 memoryAddress #1 [byte#4] 69 MA_B4 #1

#10 memorySize #1 01 MS#1

#11 memoryAddress #2 [byte#1] (MSB) - Engine speed 21 MA_B1 #2

#12 memoryAddress #2 [byte#2] 09 MA_B2 #2

#13 memoryAddress #2 [byte#3] 19 MA_B3 #2

#14 memoryAddress #2 [byte#4] 6B MA_B4 #2

#15 memorySize #2 02 MS#2

Table 210 — DynamicallyDefineDataIdentifier positive response DDDDI F301 hex
message flow example #6

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier response SID 6C DDDIPR

#2 definitionMode = defineByMemoryAddress 02 DBMA

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 01 DDDDI_B2

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 141

10.6.5.7.3 Step #3 — DynamicallyDefineDataIdentifier — sub-function = defineByIdentifier (3rd portion)

Table 211 — DynamicallyDefineDataIdentifier request DDDDI F301 hex message flow example #6 —
definition of 3rd portion (defineByIdentifier)

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier request SID 2C DDDI

#2 sub-function = defineByIdentifier,
suppressPosRspMsgIndicationBit = FALSE

01 DBID

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 01 DDDDI_B2

#5 sourceDataIdentifier #1 [byte#1] (MSB) - Engine oil level 9A SDI_B1

#6 sourceDataIdentifier #1 [byte#2] BC SDI_B2

#7 positionInSourceDataRecord #1 1 PISDR#3

#8 memorySize #1 4 MS#3

Table 212 — DynamicallyDefineDataIdentifier positive response DDDDI F301 hex
message flow example #6

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier response SID 6C DDDIPR

#2 definitionMode = defineByIdentifier 01 DBID

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 01 DDDDI_B2

10.6.5.7.4 Step #4 — ReadDataByIdentifier — dataIdentifier = DDDDI F301 hex

Table 213 — ReadDataByIdentifier request DDDDI F301 hex message flow example #6

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier request SID 22 RDBI

#2 dataIdentifier [byte#1] (MSB) F3 DID_B1

#3 dataIdentifier [byte#2] (LSB) 01 DID_B2

ISO 14229:2006(E)

142 © ISO 2006 – All rights reserved

Table 214 — ReadDataByIdentifier positive response DDDDI F301 hex message flow example #6

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier response SID 62 RDBIPR

#2 dataIdentifier [byte#1] (MSB) F3 DID_B1

#3 dataIdentifier [byte#2] (LSB) 01 DID_B2

#4 dataRecord [data#1] = EOT (MSB) 4C DREC_DATA_1

#5 dataRecord [data#2] = EOT 36 DREC_DATA_2

#6 dataRecord [data#3] = AAT 4D DREC_DATA_3

#7 dataRecord [data#4] = ECT A6 DREC_DATA_4

#8 dataRecord [data#5] = RPM 07 DREC_DATA_5

#9 dataRecord [data#6] = RPM 50 DREC_DATA_6

#10 dataRecord [data#7] = EOL (MSB) 49 DREC_DATA_7

#11 dataRecord [data#8] = EOL 21 DREC_DATA_8

#12 dataRecord [data#9] = EOL 00 DREC_DATA_9

#13 dataRecord [data#10] = EOL 17 DREC_DATA_10

10.6.5.7.5 Step #5 — DynamicallyDefineDataIdentifier — Clear definition of DDDDI F301 hex

Table 215 — DynamicallyDefineDataIdentifier request clear DDDDI F301 hex message flow example #6

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier request SID 2C DDDI

#2 sub-function = clearDynamicallyDefinedDataIdentifier,
suppressPosRspMsgIndicationBit = FALSE

03 CDDDI

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 01 DDDDI_B2

Table 216 — DynamicallyDefineDataIdentifier positive response clear DDDDI F301 hex
message flow example #6

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 DynamicallyDefineDataIdentifier response SID 6C DDDIPR

#2 definitionMode = clearDynamicallyDefinedDataIdentifier 03 CDDDI

#3 dynamicallyDefinedDataIdentifier [byte#1] (MSB) F3 DDDDI_B1

#4 dynamicallyDefinedDataIdentifier [byte#2] (LSB) 01 DDDDI_B2

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 143

10.7 WriteDataByIdentifier (2E hex) service

10.7.1 Service description

The WriteDataByIdentifier service allows the client to write information into the server at an internal location
specified by the provided data identifier.

The WriteDataByIdentifier service is used by the client to write a dataRecord to a server. The data is identified
by a dataIdentifier and may or may not be secured.

Dynamically defined dataIdentifer(s) shall not be used with this service. It is the vehicle manufacturer’s
responsibility that the server conditions are met when performing this service. Possible uses for this service
are:

⎯ programming configuration information into the server (e.g. VIN number);

⎯ clearing non-volatile memory;

⎯ resetting learned values; and

⎯ setting option content.

The server may restrict or prohibit write access to certain dataIdentifier values (as defined by the system
supplier/vehicle manufacturer for read-only identifiers, etc.).

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.3 in the event that those addressing methods are implemented for this service.

10.7.2 Request message

10.7.2.1 Request message definition

Table 217 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 WriteDataByIdentifier Request Service Id M 2E WDBI

#2
#3

dataIdentifier[] = [
byte#1 (MSB)
byte#2]

M
M

00-FF
00-FF

DID_
HB
LB

#4
:

#m+3

dataRecord[] = [
data#1
:
data#m]

M
:
U

00-FF

:
00-FF

DREC_
DATA_1

:
DATA_m

10.7.2.2 Request message sub-function parameter $Level (LEV_) definition

This service does not use a sub-function parameter.

ISO 14229:2006(E)

144 © ISO 2006 – All rights reserved

10.7.2.3 Request message data parameter definition

The following data parameters are defined for this service.

Table 218 — Request message data parameter definition

Definition

dataIdentifier

This parameter identifies the server data record that the client is requesting to write to (see C.1 for a detailed parameter
definition).

dataRecord

This parameter provides the data record associated with the dataIdentifier that the client is requesting to write to.

10.7.3 Positive response message

10.7.3.1 Positive response message definition

Table 219 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 WriteDataByIdentifier Response Service Id M 6E WDBIPR

#2
#3

dataIdentifier[] = [
byte#1 (MSB)
byte#2]

M
M

00-FF
00-FF

DID_
HB
LB

10.7.3.2 Positive response message data parameter definition

Table 220 — Response message data parameter definition

Definition

dataIdentifier

This parameter is an echo of the data parameter dataIdentifier from the request message.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 145

10.7.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 221.

Table 221 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect U CNC

 This response code shall be sent if the operating conditions of the server to perform the
required action are not met.

31 requestOutOfRange M ROOR

 This response code shall be sent if:

1) the dataIdentifier in the request message is not supported in the server or the
dataIdentifier is supported for read only purpose (via ReadDataByIdentifier service);

2) any data transmitted in the request message after the dataIdentifier is invalid (if
applicable to the node).

33 securityAccessDenied M SAD

 This code shall be sent if the dataIdentifier, which references a specific address, is
secured and the server is not in an unlocked state.

72 generalProgrammingFailure M GPF

 This return code shall be sent if the server detects an error when writing to a memory
location.

10.7.5 Message flow example WriteDataByIdentifier

10.7.5.1 Assumptions

This subclause specifies the conditions to be fulfilled for the example to perform a WriteDataByIdentifier
service.

The service in this example is not limited by any restriction of the server. This example demonstrates VIN
programming via a two-byte dataIdentifier F190 hex.

ISO 14229:2006(E)

146 © ISO 2006 – All rights reserved

10.7.5.2 Example #1 — write dataIdentifier F190 hex (VIN)

Table 222 — WriteDataByIdentifier request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 WriteDataByIdentifier request SID 2E WDBI

#2 dataIdentifier [byte#1] (MSB) F1 DID_B1

#3 dataIdentifier [byte#2] 90 DID_B2

#4 dataRecord [data#1] = VIN Digit 1 = “W” 57 DREC_DATA1

#5 dataRecord [data#2] = VIN Digit 2 = “0” 30 DREC_DATA2

#6 dataRecord [data#3] = VIN Digit 3 = “L” 4C DREC_DATA3

#7 dataRecord [data#4] = VIN Digit 4 = “0” 30 DREC_DATA4

#8 dataRecord [data#5] = VIN Digit 5 = “0” 30 DREC_DATA5

#9 dataRecord [data#6] = VIN Digit 6 = “0” 30 DREC_DATA6

#10 dataRecord [data#7] = VIN Digit 7 = “0” 30 DREC_DATA7

#11 dataRecord [data#8] = VIN Digit 8 = “4” 34 DREC_DATA8

#12 dataRecord [data#9] = VIN Digit 9 = “3” 33 DREC_DATA9

#13 dataRecord [data#10] = VIN Digit 10 = “M” 4D DREC_DATA10

#14 dataRecord [data#11] = VIN Digit 11 = “B” 42 DREC_DATA11

#15 dataRecord [data#12] = VIN Digit 12 = “5” 35 DREC_DATA12

#16 dataRecord [data#13] = VIN Digit 13 = “4” 34 DREC_DATA13

#17 dataRecord [data#14] = VIN Digit 14 = “1” 31 DREC_DATA14

#18 dataRecord [data#15] = VIN Digit 15 = “3” 33 DREC_DATA15

#19 dataRecord [data#16] = VIN Digit 16 = “2” 32 DREC_DATA16

#20 dataRecord [data#17] = VIN Digit 17 = “6” 36 DREC_DATA17

Table 223 — WriteDataByIdentifier positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 WriteDataByIdentifier response SID 6E WDBIPR

#2 dataIdentifier [byte#1] (MSB) F1 DID_B1

#3 dataIdentifier [byte#2] (LSB) 90 DID_B2

10.8 WriteMemoryByAddress (3D hex) service

10.8.1 Service description

The WriteMemoryByAddress service allows the client to write information into the server at one or more
contiguous memory locations.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 147

The WriteMemoryByAddress request message writes information specified by the parameter dataRecord[]
into the server at memory locations specified by the parameters memoryAddress and memorySize. The
number of bytes used for the memoryAddress and memorySize parameters is defined by
addressAndLengthFormatIdentifier (low and high nibble). It is also possible to use a fixed
addressAndLengthFormatIdentifier and unused bytes within the memoryAddress or memorySize parameter
are padded with the value 00 hex in the higher range address locations.

The format and definition of the dataRecord shall be vehicle-manufacturer-specific and may or may not be
secured. It is the vehicle manufacturer’s responsibility to assure that the server conditions are met when
performing this service. Possible uses for this service are:

⎯ clearing the non-volatile memory;

⎯ changing calibration values.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.3 in the event that those addressing methods are implemented for this service.

10.8.2 Request message

10.8.2.1 Request message definition

Table 224 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 WriteMemoryByAddress Request Service Id M 3D WMBA

#2 addressAndLengthFormatIdentifier M 00-FF ALFID

#3
:

#m+2

memoryAddress[] = [
byte#1 (MSB)
:
byte#m]

M
:

C1
a

00-FF

:
00-FF

MA_
B1
:

Bm

#n-r-2-(k-1)

:
#n-r-2

memorySize[] = [
byte#1 (MSB)
:
byte#k]

M
:

C2
b

00-FF

:
00-FF

MS_
B1
:

Bk

#n-(r-1)

:
#n

dataRecord[] = [
data#1
:
data#r]

M
:
U

00-FF

:
00-FF

DREC_
DATA_1

:
DATA_r

a The presence of the C1 parameter depends on the address length information parameter of the addressAndLengthFormatIdentifier.

b The presence of the C2 parameter depends on the memory size length information of the addressAndLengthFormatIdentifier.

10.8.2.2 Request message sub-function parameter $Level (LEV_) definition

This service does not use a sub-function parameter.

10.8.2.3 Request message data parameter definition

The following data parameters are defined for this service.

ISO 14229:2006(E)

148 © ISO 2006 – All rights reserved

Table 225 — Request message data parameter definition

Definition

addressAndLengthFormatIdentifier

This parameter is a one-byte value with each nibble encoded separately (see annex G.1 for example values):

— bit 7 - 4: length (number of bytes) of the memorySize parameter;

— bit 3 - 0: length (number of bytes) of the memoryAddress parameter.

memoryAddress

The parameter memoryAddress is the starting address of server memory to which data is to be written. The number of
bytes used for this address is defined by the low nibble (bit 3 - 0) of the addressFormatIdentifier. Byte#m in the
memoryAddress parameter is always the least significant byte of the address being referenced in the server. The most
significant byte of the address can be used as a memoryIdentifier.

An example of the use of a memoryIdentifier would be a dual processor server with 16 bit addressing and memory
address overlap (when a given address is valid for either processor but yields a different physical memory device or
when internal and external flash is used). In this case, an otherwise unused byte within the memoryAddress parameter
can be specified as a memoryIdentifier used to select the desired memory device. Usage of this functionality shall be as
defined by the vehicle manufacturer/system supplier.

memorySize

The parameter memorySize in the WriteMemoryByAddress request message specifies the number of bytes to be written
starting at the address specified by memoryAddress in the server's memory. The number of bytes used for this size is
defined by the high nibble (bit 7 - 4) of the addressFormatIdentifier.

dataRecord

This parameter provides the data that the client is actually attempting to write into the server memory addresses within
the interval {$MA, ($MA + $MS - $01)}.

10.8.3 Positive response message

10.8.3.1 Positive response message definition

Table 226 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 WriteMemoryByAddress Response Service Id M 7D WMBAPR

#2 addressAndLengthFormatIdentifier M 00-FF ALFID

#3
:

#(m-1)+3

memoryAddress[] = [
byte#1 (MSB)
:
byte#m]

M
:

C1
a

00-FF

:
00-FF

MA_
B1
:

Bm

#n-(k-1)

:
#n

memorySize[] = [
byte#1 (MSB)
:
byte#k]

M
:

C2
b

00-FF

:
00-FF

MS_
B1
:

Bk

a The presence of the C1 parameter depends on the address length information parameter of the addressAndLengthFormatIdentifier.

b The presence of the C2 parameter depends on the memory size length information of the addressAndLengthFormatIdentifier.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 149

10.8.3.2 Positive response message data parameter definition

Table 227 — Response message data parameter definition

Definition

addressAndLengthFormatIdentifier

This parameter is an echo of the addressAndLengthFormatIdentifier from the request message.

memoryAddress

This parameter is an echo of the memoryAddress from the request message.

memorySize

This parameter is an echo of the memorySize from the request message.

10.8.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in Table 228.

Table 228 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect U CNC

 This response code shall be sent if the operating conditions of the server to perform the
required action are not met.

31 requestOutOfRange

This code shall be sent if:

M ROOR

 1) any memory address within the interval [$MA, ($MA + $MS -$1)] is invalid;

2) any memory address within the interval [$MA, ($MA + $MS -$1)] is restricted;

3) the memorySize parameter value in the request message is greater than the
maximum value supported by the server;

4) the specified addressAndLengthFormatIdentifier is not valid.

33 securityAccessDenied M SAD

 This code shall be sent if any memory address within the interval [$MA, ($MA + $MS -$1)]
is secure and the server is locked.

72 generalProgrammingFailure M GPF

 This return code shall be sent if the server detects an error when writing to a memory
location.

10.8.5 Message flow example WriteMemoryByAddress

10.8.5.1 Assumptions

This subclause specifies the conditions to be fulfilled for the example to perform a WriteMemoryByAddress
service. The service in this example is not limited by any restriction of the server.

The following examples demonstrate writing data bytes into server memory for two-byte, three-byte, and
four-byte addressing formats, respectively.

ISO 14229:2006(E)

150 © ISO 2006 – All rights reserved

10.8.5.2 Example #1 — WriteMemoryByAddress — two-byte (16-bit) addressing

Table 229 — WriteMemoryByAddress request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 WriteMemoryByAddress request SID 3D WMBA

#2 addressAndLengthFormatIdentifier 12 ALFID

#3 memoryAddress [byte#1] (MSB) 20 MA_B1

#4 memoryAddress [byte#2] (LSB) 48 MA_B2

#5 memorySize [byte#1] 02 MS_B1

#6 dataRecord [data#1] 00 DREC_DATA_1

#7 dataRecord [data#2] 8C DREC_DATA_2

Table 230 — WriteMemoryByAddress positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 WriteMemoryByAddress response SID 7D WMBAPR

#2 addressAndLengthFormatIdentifier 12 ALFID

#3 memoryAddress [byte#1] (MSB) 20 MA_B1

#4 memoryAddress [byte#2] (LSB) 48 MA_B2

#5 memorySize [byte#1] 02 MS_B1

10.8.5.3 Example #2 — WriteMemoryByAddress — three-byte (24-bit) addressing

Table 231 — WriteMemoryByAddress request message flow example #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 WriteMemoryByAddress request SID 3D WMBA

#2 addressAndLengthFormatIdentifier 13 ALFID

#3 memoryAddress [byte#1] 20 MA_B1

#4 memoryAddress [byte#2] 48 MA_B2

#5 memoryAddress [byte#3] 13 MA_B3

#6 memorySize [byte#1] 03 MS_B1

#7 dataRecord [data#1] 00 DREC_DATA_1

#8 dataRecord [data#2] 01 DREC_DATA_2

#9 dataRecord [data#3] 8C DREC_DATA_3

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 151

Table 232 — WriteMemoryByAddress positive response message flow example #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 WriteMemoryByAddress response SID 7D WMBAPR

#2 addressAndLengthFormatIdentifier 13 ALFID

#3 memoryAddress [byte#1] 20 MA_B1

#4 memoryAddress [byte#2] 48 MA_B2

#5 memoryAddress [byte#3] 13 MA_B3

#6 memorySize [byte#1] 03 MS_B1

10.8.5.4 Example #3 — WriteMemoryByAddress — four-byte (32-bit) addressing

Table 233 — WriteMemoryByAddress request message flow example #3

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 WriteMemoryByAddress request SID 3D WMBA

#2 addressAndLengthFormatIdentifier 14 ALFID

#3 memoryAddress [byte#1] (MSB) 20 MA_B1

#4 memoryAddress [byte#2] 48 MA_B2

#5 memoryAddress [byte#3] 13 MA_B3

#6 memoryAddress [byte#4] (LSB) 09 MA_B4

#7 memorySize [byte#1] 05 MS_B1

#8 dataRecord [data#1] 00 DREC_DATA_1

#9 dataRecord [data#2] 01 DREC_DATA_2

#10 dataRecord [data#3] 8C DREC_DATA_3

#11 dataRecord [data#4] 09 DREC_DATA_4

#12 dataRecord [data#5] AF DREC_DATA_5

Table 234 — WriteMemoryByAddress positive response message flow example #3

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 WriteMemoryByAddress response SID 7D WMBAPR

#2 addressAndLengthFormatIdentifier 14 ALFID

#3 memoryAddress [byte#1] (MSB) 20 MA_B1

#4 memoryAddress [byte#2] 48 MA_B2

#5 memoryAddress [byte#3] 13 MA_B3

#6 memoryAddress [byte#4] (LSB) 09 MA_B4

#7 memorySize [byte#1] 05 MS_B1

ISO 14229:2006(E)

152 © ISO 2006 – All rights reserved

11 Stored data transmission functional unit

11.1 Overview

Table 235 — Stored data transmission functional unit

Service Description

ClearDiagnosticInformation Allows the client to clear diagnostic information from the server (including DTCs,
captured data, etc.)

ReadDTCInformation Allows the client to request diagnostic information from the server (including
DTCs, captured data, etc.)

11.2 ClearDiagnosticInformation (14 hex) service

11.2.1 Service description

The ClearDiagnosticInformation service is used by the client to clear diagnostic information in one server's or
multiple servers’ memory.

The server shall send a positive response when the ClearDiagnosticInformation service is completely
processed. The server shall send a positive response even if no DTCs are stored. If a server supports multiple
copies of DTC status information in memory (e.g. one copy in RAM and one copy in EEPROM), the server
shall clear the copy used by the ReadDTCInformation status reporting service. Additional copies, e.g. backup
copies in long-term memory, are updated according to the appropriate backup strategy (e.g. in the power-latch
phase).

NOTE If the power-latch phase is disturbed (e.g. a battery disconnect during the power-latch phase), this may cause
data inconsistency.

The request message of the client contains one parameter. The parameter groupOfDTC allows the client to
clear a group of DTCs (e.g. powertrain, body, chassis, etc.), or a specific DTC. Refer to D.1 for further details.
Unless otherwise stated, the server shall clear both emissions-related and non-emissions-related DTC
information from memory for the requested group.

DTC information reset/cleared via this service includes but is not limited to the following:

⎯ DTC status byte (see ReadDTCInformation service in 11.3);

⎯ captured DTC snapshot data (DTCSnapshotData, see ReadDTCInformation service in 11.3);

⎯ captured DTC extended data (DTCExtendedData, see ReadDTCInformation service in 11.3);

⎯ other DTC-related data such as first/most recent DTC, flags, counters, timers, etc. specific to DTCs.

Permanent DTCs shall be stored in non-volatile memory. These DTCs cannot be cleared by any test
equipment (e.g. on-board tester, off-board tester). The OBD system shall clear these DTCs itself by
completing and passing the on-board monitor. This would prevent clearing DTCs simply by disconnecting the
battery.

Permanent DTCs shall be erasable if the engine control module is reprogrammed and the readiness status for
all monitored components and systems are set to “not complete.”

Any DTC information stored in an optionally available DTC mirror memory in the server is not affected by this
service (see ReadDTCInformation (19 hex) service in 11.3 for DTC mirror memory definition).

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 153

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.3 in the event that those addressing methods are implemented for this service.

11.2.2 Request message

11.2.2.1 Request message definition

Table 236 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ClearDiagnosticInformation Request Service Id M 14 CDTCI

#2
#3
#4

groupOfDTC[] = [
groupOfDTCHighByte
groupOfDTCMiddleByte
groupOfDTCLowByte]

M
M
M

00-FF
00-FF
00-FF

GODTC_
HB
MB
LB

11.2.2.2 Request message sub-function parameter $Level (LEV_) definition

There are no sub-function parameters used by this service.

11.2.2.3 Request message data parameter definition

The following data parameter is defined for this service.

Table 237 — Request message data parameter definition

Definition

groupOfDTC

This parameter contains a three-byte value indicating the group of DTCs (e.g. powertrain, body, chassis) or the particular
DTC to be cleared. The definition of values for each value/range of values is included in D.1.

11.2.3 Positive response message

11.2.3.1 Positive response message definition

Table 238 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ClearDiagnosticInformation Positive Response Service Id M 54 CDTCIPR

11.2.3.2 Positive response message data parameter definition

There are no data parameters used by this service in the positive response message.

ISO 14229:2006(E)

154 © ISO 2006 – All rights reserved

11.2.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service.

Table 239 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect C CNC

 This response code shall be used if internal conditions within the server prevent the
clearing of DTC related information stored in the server.

31 requestOutOfRange M ROOR

 This return code shall be sent if the specified groupOfDTC parameter is not
supported.

11.2.5 Message flow example ClearDiagnosticInformation

The client sends a ClearDiagnosticInformation request message to a single server.

Table 240 — ClearDiagnosticInformation request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ClearDiagnosticInformation request SID 14 CDTCI

#2 groupOfDTC [DTCHighByte] (“Emissions-related systems”) 00 DTCHB

#3 groupOfDTC [DTCMiddleByte] 00 DTCMB

#4 groupOfDTC [DTCLowByte] 00 DTCLB

Table 241 — ClearDiagnosticInformation positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ClearDiagnosticInformation response SID 54 CDTCIPR

11.3 ReadDTCInformation (19 hex) service

11.3.1 Service description

11.3.1.1 General description

This service allows a client to read the status of server-resident Diagnostic Trouble Code (DTC) information
from any server or group of servers within a vehicle. Unless otherwise stated, the server shall return both

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 155

emissions-related and non emissions-related DTC information. This service allows the client to do the
following:

⎯ retrieve the number of DTCs matching a client-defined DTC status mask (at the point of the request);

⎯ retrieve the list of all DTCs matching a client-defined DTC status mask;

⎯ retrieve DTCSnapshot data associated with a client-defined DTC and status mask combination (DTC
Snapshots are specific data records associated with a DTC that are stored in the server’s memory. The
content of the DTC Snapshots is not defined by ISO 14229, but typical usage of DTC Snapshots is to
store data upon detection of a system malfunction. The DTC Snapshots will act as a snapshot of data
values from the time of the system malfunction occurrence.);

⎯ retrieve DTCExtendedData associated with a client-defined DTC and status mask combination out of the
DTC memory or the DTC mirror memory. DTC Extended Data consist of extended status information
associated with a DTC. DTC Extended Data contain DTC parameter values, which have been identified
at the time of the request. A typical use of DTC Extended Data is to store dynamic data associated with
the DTC, e.g.:

⎯ DTC occurrence counter;

⎯ current threshold values;

⎯ time of last occurrence (etc.);

⎯ fault validation counters (e.g. counts number of reported “test failed” and possible other counters if
the validation is performed in several steps);

⎯ uncompleted test counters (e.g. counts numbers of driving cycles since the test was latest completed
i.e. since the test reported “test passed” or “test failed”);

⎯ fault occurrence counters (e.g. counts number of driving cycles in which “test failed” has been
reported);

⎯ DTC aging counter (e.g. counts number of driving cycles since the fault was last failed excluding the
driving cycles in which the test has not reported “test passed” or the test report “test failed”);

⎯ specific counters for OBD (e.g. number of remaining driving cycles until the “check engine” lamp is
switched off);

⎯ retrieve the number of DTCs matching a client-defined severity mask (at the point of the request);

⎯ retrieve the list of DTCs matching a client-defined severity mask record;

⎯ retrieve severity information for a client-defined DTC;

⎯ retrieve the status of all DTC's supported by the server;

⎯ retrieve the first DTC failed by the server;

⎯ retrieve the most recently failed DTC within the server;

⎯ retrieve the first DTC confirmed by the server;

⎯ retrieve the most recently confirmed DTC within the server;

⎯ retrieve the list of DTCs out of the DTC mirror memory matching a client-defined DTC status mask;

ISO 14229:2006(E)

156 © ISO 2006 – All rights reserved

⎯ retrieve mirror memory DTCExtendedData record data for a client-defined DTC mask and a client-defined
DTCExtendedData record number out of the DTC mirror memory;

⎯ retrieve the number of DTCs out of the DTC mirror memory matching a client-defined DTC status mask;

⎯ retrieve the number of “only” emissions-related OBD DTCs matching a client-defined DTC status mask
(Emissions-related OBD DTCs cause the malfunction indicator to be turned on/display a message if such
a DTC is detected.);

⎯ retrieve all current “prefailed” DTCs which have or have not yet been detected as “pending” or
“confirmed”;

⎯ retrieve all DTCs with “permanentDTC” status (These DTCs have been previously cleared by the
clearDiagnosticInformation service but remain in the non-volatile memory of the server until the
appropriate monitors for each DTC have successfully passed.).

This service uses a sub-function to determine which type of diagnostic information the client is requesting.
Further details regarding each sub-function parameter are provided in the following clauses.

This service makes use of the following terms:

⎯ Enable Criteria: server/vehicle manufacturer/system supplier specific criteria used to control when the
server actually performs a particular internal diagnostic;

⎯ Test Pass Criteria: server/vehicle manufacturer/system supplier specific conditions that define whether a
system being diagnosed is functioning properly within normal, acceptable operating ranges (e.g. no
failures exist and the diagnosed system is classified as “OK”);

⎯ Test Failure Criteria: server/vehicle manufacturer/system supplier specific failure conditions that define
whether a system being diagnosed has failed the test;

⎯ Confirmed Failure Criteria: server/vehicle manufacturer/system supplier specific failure conditions that
define whether the system being diagnosed is definitively problematic (confirmed), warranting storage of
the DTC record in long-term memory;

⎯ Occurrence Counter: a counter maintained by certain servers that records the number of instances in
which a given DTC test reported a unique occurrence of a test failure;

⎯ Aging: a process whereby certain servers evaluate past results of each internal diagnostic to determine if
a confirmed DTC can be cleared from long-term memory, e.g. in the event of a calibrated number of
failure-free cycles.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.2 in the event that those addressing methods are implemented for this service.

11.3.1.2 Retrieving the number of DTCs that match a client-defined status mask

A client can retrieve a count of the number of DTCs matching a client-defined status mask by sending a
request for this service with the sub-function set to reportNumberOfDTCByStatusMask. The response to this
request contains the DTCStatusAvailabilityMask, which provides an indication of DTC status bits that are
supported by the server for masking purposes. Following the DTCStatusAvailabilityMask, the response
contains the DTCFormatIdentifier which reports information about the DTC formatting and encoding. The
DTCFormatIdentifier is followed by the DTCCount parameter which is a two-byte unsigned numeric number
containing the number of DTCs available in the server’s memory based on the status mask provided by the
client.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 157

The sub-function reportNumberOfMirrorMemoryDTCByStatusMask has the same functionality as the
sub-function reportNumberOfDTCByStatusMask with the difference that it returns the number of DTCs out of
DTC mirror memory.

11.3.1.3 Retrieving the list of DTCs that match a client-defined status mask

The client can retrieve a list of DTCs which satisfy a client-defined status mask by sending a request with the
sub-function byte set to reportDTCByStatusMask. This sub-function allows the client to request the server to
report all DTCs that are “testFailed” OR “confirmed” OR “etc.”

The evaluation shall be done as follows. The server shall perform a bit-wise logical AND-ing operation
between the mask specified in the client’s request and the actual status associated with each DTC supported
by the server. In addition to the DTCStatusAvailabilityMask, the server shall return all DTCs for which the
result of the AND-ing operation is non-zero [i.e. (statusOfDTC & DTCStatusMask) != 0]. If the client specifies a
status mask that contains bits that the server does not support, then the server shall process the DTC
information using only the bits that it does support. If no DTCs within the server match the masking criteria
specified in the client’s request, no DTC or status information shall be provided following the
DTCStatusAvailabilityMask byte in the positive response message.

DTC status information shall be cleared upon a successful ClearDiagnosticInformation request from the client
(see DTC status bit definitions in D.2 for further descriptions on the DTC status bit handling in case of a
ClearDiagnosticInformation service request reception in the server).

11.3.1.4 Retrieving DTCSnapshot record identification

A client can retrieve DTCSnapshot record identification information for all captured DTCSnapshot records by
sending a request for this service with the sub-function set to reportDTCSnapshotIdentification. The server
shall return the list of DTCSnapshot record identification information for all stored DTCSnapshot records. Each
item the server places in the response message for a single DTCSnapshot record shall contain a DTCRecord
[containing the DTC number (high, middle and low byte)] and the DTCSnapshot record number. In case
multiple DTCSnapshot records are stored for a single DTC, then the server shall place one item in the
response for each occurrence, using a different DTCSnapshot record number for each occurrence (used for
the later retrieval of the record data).

A server may support the storage of multiple DTCSnapshot records for a single DTC to track conditions
present at each occurrence of the DTC. Support of this functionality, definition of “occurrence” criteria and the
number of DTCSnapshot records to be supported shall be defined by the system supplier/vehicle
manufacturer.

DTCSnapshot record identification information shall be cleared upon a successful ClearDiagnosticInformation
request from the client. It is in the responsibility of the vehicle manufacturer to specify the rules for the deletion
of stored DTCs and DTCSnapshot data in case of a memory overflow (memory space for stored DTCs and
DTCSnapshot data completely occupied in the server).

11.3.1.5 Retrieving DTCSnapshot record data for a client-defined DTC mask and/or a client-defined
DTCSnapshot record number

A client can retrieve captured DTCSnapshot record data for either a client-defined DTCMaskRecord in
conjunction with a DTCSnapshot record number or a DTCSnapshot record number only by sending a request
for this service with the sub-function set to either reportDTCSnapshotRecordByDTCNumber or
reportDTCSnapshotRecordByRecordNumber. In case of reportDTCSnapshotRecordByDTCNumber, the
server shall search through its supported DTCs for an exact match with the DTCMaskRecord specified by the
client [containing the DTC number (high, middle, and low byte)]. In this case, the
DTCSnapshotRecordNumber parameter provided in the client’s request shall specify a particular occurrence
of the specified DTC for which DTCSnapshot record data is being requested. In case of
reportDTCSnapshotRecordByRecordNumber, the server shall search through its stored DTCSnapshot
records for a match to the client-provided record number.

ISO 14229:2006(E)

158 © ISO 2006 – All rights reserved

NOTE If the DTCSnapshotRecordNumber is unique to the server (each record number exists only once in the server),
then both sub-function parameters (reportDTCSnapshotRecordByDTCNumber,
reportDTCSnapshotRecordByRecordNumber) for retrieving the DTCSnapshot records can be used. If the
DTCSnapshotRecordNumber is unique to a DTC, then only the reportDTCSnapshotRecordByDTCNumber can be used.

If the server supports the ability to store multiple DTCSnapshot records for a single DTC (support of this
functionality is to be defined by the system supplier/vehicle manufacturer), then it is recommended that the
server also implements the reportDTCSnapshotIdentification sub-function parameter. It is recommended that
the client first requests the identification of DTCSnapshot records stored using the sub-function parameter
reportDTCSnapshotIdentification before requesting a specific DTCSnapshotRecordNumber via the
reportDTCSnapshotRecordByDTCNumber or reportDTCSnapshotRecordByRecordNumber.

It is also recommended to support the sub-function parameter reportDTCSnapshotRecordIdentification in
order to give the client the opportunity to identify the stored DTCSnapshot records directly instead of parsing
through all stored DTCs of the server to determine if a DTCSnapshot record is stored.

It shall be the responsibility of the system supplier/vehicle manufacturer to define whether DTCSnapshot
records captured within such servers store data associated with the first or most recent occurrence of a failure.

Along with the DTC number and statusOfDTC, the server shall return a single, predefined
DTCSnapshotRecord in response to the client’s request if a failure has been identified for the client-defined
DTCMaskRecord and DTCSnapshotRecordNumber parameters (DTCSnapshotRecordNumber unequal FF
hex).

The exact failure criteria shall be defined by the system supplier/vehicle manufacturer.

The DTCSnapshot record may contain multiple data parameters that can be used to reconstruct the vehicle
conditions (e.g. B+, RPM, time-stamp) at the time of the failure occurrence.

The vehicle manufacturer shall define format and content of the DTCSnapshotRecord. The data reported in
the DTCSnapshotRecord first of all contains a dataIdentifier to identify the data that follows. This
dataIdentifier/data combination can be repeated within the DTCSnapshotRecord.The usage of one or multiple
dataIdentifiers in the DTCSnapshotRecord allows for the storage of different types of DTCSnapshotRecords
for a single DTC for different occurrences of the failure. A parameter which indicates the number of record
dataIdentifiers contained within each DTCSnapshotRecord shall be provided with each DTCSnapshotRecord
to assist data retrieval.

The server shall report one DTCSnapshot record in a single response message, except if the client has set
the DTCSnapshotRecordNumber to FF hex, because this shall cause the server to respond with all
DTCSnapshot records stored for the client-defined DTCMaskRecord in a single response message.

If the client requested to report all DTCSnapshot records by DTC number, then the DTCAndStatusRecord is
only included one time in the response message. If the client requested to report all DTCSnapshot records by
record number, then the DTCAndStatusRecord shall be repeated in the response message for each stored
DTCSnapshot record.

The server shall negatively respond if the DTCMaskRecord or DTCSnapshotRecordNumber parameters
specified by the client are invalid or not supported by the server. This is to be differentiated from the case in
which the DTCMaskRecord and/or DTCSnapshotRecordNumber parameters specified by the client are
indeed valid and supported by the server, but have no DTCSnapshot data associated with them (e.g. because
a failure event never occurred for the specified DTC or record number). In case of
reportDTCSnapshotRecordByDTCNumber, the server shall send the positive response containing only the
DTCAndStatusRecord [echo of the requested DTC number (high, middle and low byte) plus the statusOfDTC].
In case of reportDTCSnapshotRecordByRecordNumber, the server shall send the positive response
containing only the DTCSnapshotRecordNumber (echo of the requested record number).

DTCSnapshot information shall be cleared upon a successful ClearDiagnosticInformation request from the
client. It is the responsibility of the vehicle manufacturer to specify the rules for the deletion of stored DTCs
and DTCSnapshot data in case of a memory overflow (memory space for stored DTCs and DTCsnapshot
data completely occupied in the server).

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 159

11.3.1.6 Retrieving DTCExtendedData record data for a client-defined DTC mask and a client-defined
DTCExtendedData record number

A client can retrieve DTCExtendedData for a client-defined DTCMaskRecord in conjunction with a
DTCExtendedData record number by sending a request for this service with the sub-function set to
reportDTCExtendedDataRecordByDTCNumber. The server shall search through its supported DTCs for an
exact match with the DTCMaskRecord specified by the client [containing the DTC number (high, middle and
low byte)]. In this case, the DTCExtendedDataRecordNumber parameter provided in the client’s request shall
specify a particular DTCExtendedData record of the specified DTC for which DTCExtendedData is being
requested.

Along with the DTC number and statusOfDTC, the server shall return a single predefined DTCExtendedData
record in response to the client’s request (DTCExtendedDataRecordNumber unequal FF hex).

The vehicle manufacturer shall define format and content of the DTCExtendedDataRecord. The structure of
the data reported in the DTCExtendedDataRecord is defined by the DTCExtendedDataRecordNumber in a
similar way to the definition of data within a record dataIdentifier. Multiple DTCExtendedDataRecordNumbers
and associated DTCExtendedDataRecords may be included in the response. The usage of one or multiple
DTCExtendedDataRecordNumbers allows for the storage of different types of DTCExtendedDataRecords for
a single DTC.

The server shall report one DTCExtendedData record in a single response message, except if the client has
set the DTCExtendedDataRecordNumber to FF hex, because this shall cause the server to respond with all
DTCExtendedData records stored for the client-defined DTCMaskRecord in a single response message.

The server shall negatively respond if the DTCMaskRecord or DTCExtendedDataRecordNumber parameters
specified by the client are invalid or not supported by the server. This is to be differentiated from the case in
which the DTCMaskRecord and/or DTCExtendedDataRecordNumber parameters specified by the client are
indeed valid and supported by the server but have no DTC extended data associated with it (e.g. because of
memory overflow of the extended data). In case of reportDTCExtendedDataRecordByDTCNumber, the server
shall send the positive response containing only the DTCAndStatusRecord [echo of the requested DTC
number (high, middle and low byte) plus the statusOfDTC].

Clearance of DTCExtendedData information upon the reception of a ClearDiagnosticInformation service is
specified in 11.2.1. It is the responsibility of the vehicle manufacturer to specify the rules for the deletion of
stored DTCs and DTC extended data in case of a memory overflow (memory space for stored DTCs and DTC
extended data completely occupied in the server).

11.3.1.7 Retrieving the number of DTCs that match a client-defined severity mask record

A client can retrieve a count of the number of DTCs matching a client-defined severity status mask record by
sending a request for this service with the sub-function set to reportNumberOfDTCBySeverityMaskRecord.
The server shall scan through all supported DTCs, performing a bit-wise logical AND-ing operation between
the mask record specified by the client with the actual information of each stored DTC.

((statusOfDTC & DTCStatusMask) & (severity & DTCSeverityMask)) != 0

For each AND-ing operation yielding a non-zero result, the server shall increment a counter by one. If the
client specifies a status mask within the mask record that contains bits that the server does not support, then
the server shall process the DTC information using only the bits that it does support. Once all supported DTCs
have been checked once, the server shall return the DTCStatusAvailabilityMask and resulting two-byte count
to the client.

If no DTCs within the server match the masking criteria specified in the client's request, the count returned by
the server to the client shall be zero. The reported number of DTCs matching the DTC status mask is valid for
the point in time when the request was made. There is no relationship between the reported number of DTCs
and the actual list of DTCs read via the sub-function reportDTCByStatusMask because the request to read the
DTCs is done at a different point in time.

ISO 14229:2006(E)

160 © ISO 2006 – All rights reserved

11.3.1.8 Retrieving severity and functional unit information that matches a client-defined severity
mask record

The client can retrieve a list of DTC severity and functional unit information, which satisfies a client-defined
severity mask record by sending a request with the sub-function byte set to reportDTCBySeverityMaskRecord.
This sub-function allows the client to request the server to report all DTCs with a certain severity and status
that are “testFailed” OR ”confirmed” OR ”etc.” The evaluation shall be done as follows.

The server shall perform a bit-wise logical AND-ing operation between the DTCSeverityMask and the
DTCStatusMask specified in the client's request and the actual DTCSeverity and statusOfDTC associated
with each DTC supported by the server.

In addition to the DTCStatusAvailabilityMask, the server shall return all DTCs for which the result of the
AND-ing operation is non-zero,

((statusOfDTC & DTCStatusMask) & (severity & DTCSeverityMask)) != 0

If the client specifies a status mask within the mask record that contains bits that the server does not support,
then the server shall process the DTC information using only the bits that it does support. If no DTCs within
the server match the masking criteria specified in the client’s request, no DTC or status information shall be
provided following the DTCStatusAvailabilityMask byte in the positive response message.

11.3.1.9 Retrieving severity and functional unit information for a client-defined DTC

A client can retrieve severity and functional unit information for a client-defined DTCMaskRecord by sending a
request for this service with the sub-function set to reportSeverityInformationOfDTC. The server shall search
through its supported DTCs for an exact match with the DTCMaskRecord specified by the client [containing
the DTC number (high, middle, and low byte)].

11.3.1.10 Retrieving the status of all DTCs supported by the server

A client can retrieve the status of all DTCs supported by the server by sending a request for this service with
the sub-function set to reportSupportedDTCs. The response to this request contains the
DTCStatusAvailabilityMask, which provides an indication of DTC status bits that are supported by the server
for masking purposes. Following the DTCStatusAvailabilityMask, the response also contains the
listOfDTCAndStatusRecord, which contains the DTC number and associated status for every diagnostic
trouble code supported by the server.

11.3.1.11 Retrieving the first/most recent failed DTC

The client can retrieve the first/most recent failed DTC from the server by sending a request with the
sub-function byte set to “reportFirstTestFailedDTC” or “reportMostRecentTestFailedDTC”, respectively. Along
with the DTCStatusAvailabilityMask, the server shall return the first or most recent failed DTC number and
associated status to the client.

No DTC/status information shall be provided following the DTCStatusAvailabilityMask byte in the positive
response message if there were no failed DTCs logged since the last time the client requested the server to
clear diagnostic information. Also, if only one DTC became failed since the last time the client requested the
server to clear diagnostic information, the lone failed DTC shall be returned to both reportFirstTestFailedDTC
and reportMostRecentTestFailedDTC requests from the client.

The record of the first/most recent failed DTC shall be independent of the ageing process of confirmed DTCs.

As mentioned above, first/most recent failed DTC information shall be cleared upon a successful
ClearDiagnosticInformation request from the client (see DTC status bit definitions in D.2 for further
descriptions on the DTC status bit handling in case of reception of a ClearDiagnosticInformation service
request in the server).

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 161

11.3.1.12 Retrieving the first/most recently detected confirmed DTC

The client can retrieve the first/most recently confirmed DTC from the server by sending a request with the
sub-function byte set to “reportFirstConfirmedDTC” or “reportMostRecentConfirmedDTC”, respectively. Along
with the DTCStatusAvailabilityMask, the server shall return the first or most recently confirmed DTC number
and associated status to the client.

No DTC/status information shall be provided following the DTCStatusAvailabilityMask byte in the positive
response message if there were no confirmed DTCs logged since the last time the client requested the server
to clear diagnostic information. Also, if only one DTC became confirmed since the last time the client
requested the server to clear diagnostic information, the lone confirmed DTC shall be returned to both
reportFirstConfirmedDTC and reportMostRecentConfirmedDTC requests from the client.

The record of the first confirmed DTC shall be preserved in the event that the DTC failed at one point in the
past, but then satisfied aging criteria prior to the time of the request from the client (regardless of any other
DTCs that become confirmed after the aforementioned DTC became confirmed). Similarly, a record of the
most recently confirmed DTC shall be preserved in the event that the DTC was confirmed at one point in the
past, but then satisfied ageing criteria prior to the time of the request from the client (assuming no other DTCs
became confirmed after the aforementioned DTC failed).

As mentioned above, first/most recently confirmed DTC information shall be cleared upon a successful
ClearDiagnosticInformation request from the client.

11.3.1.13 Retrieving the list of DTCs out of the server DTC mirror memory that match a client-defined
status mask

The handling of the sub-function reportMirrorMemoryDTCByStatusMask is identical to the handling defined for
reportDTCByStatusMask, except that all status mask checks are performed with the DTCs stored in the DTC
mirror memory of the server. The DTC mirror memory is an additional optional error memory in the server that
cannot be erased by the ClearDiagnosticInformation (14 hex) service. The DTC mirror memory mirrors the
normal DTC memory and can be used, for example, if the normal error memory is erased.

11.3.1.14 Retrieving mirror memory DTCExtendedData record data for a client-defined DTC mask and
a client-defined DTCExtendedData record number out of the DTC mirror memory

The handling of the sub-function reportMirrorMemoryDTCExtendedDataRecordByDTCNumber is identical to
the handling defined for reportDTCExtendedDataRecordByDTCNumber, except that the data is retrieved out
of the DTC mirror memory. The DTC mirror memory is an additional optional error memory in the server that
cannot be erased by the ClearDiagnosticInformation (14 hex) service. The DTC mirror memory mirrors the
normal DTC memory and can be used, for example, if the normal error memory is erased.

11.3.1.15 Retrieving the number of mirror memory DTCs that match a client-defined status mask

A client can retrieve a count of the number of mirror memory DTCs matching a client-defined status mask by
sending a request for this service with the sub-function set to
reportNumberOfMirrorMemoryDTCByStatusMask. The response to this request contains the
DTCStatusAvailabilityMask, which provides an indication of DTC status bits that are supported by the server
for masking purposes. Following the DTCStatusAvailabilityMask, the response contains the
DTCFormatIdentifier, which reports information about the DTC formatting and encoding. The
DTCFormatIdentifier is followed by the DTCCount parameter, which is a two-byte unsigned numeric number
containing the number of DTCs available in the server’s memory based on the status mask provided by the
client.

ISO 14229:2006(E)

162 © ISO 2006 – All rights reserved

11.3.1.16 Retrieving the number of “only emissions-related OBD” DTCs that match a client-defined
status mask

A client can retrieve a count of the number of “only emissions-related OBD” DTCs matching a client-defined
status mask by sending a request for this service with the sub-function set to
reportNumberOfEmissionsRelatedOBDDTCByStatusMask. The response to this request contains the
DTCStatusAvailabilityMask, which provides an indication of DTC status bits that are supported by the server
for masking purposes. Following the DTCStatusAvailabilityMask, the response contains the
DTCFormatIdentifier which reports information about the DTC formatting and encoding. The
DTCFormatIdentifier is followed by the DTCCount parameter, which is a two-byte unsigned numeric number
containing the number of “only emissions-related OBD” DTCs available in the server's memory based on the
status mask provided by the client.

11.3.1.17 Retrieving a list of “only emissions-related OBD” DTCs that match a client-defined status
mask

The client can retrieve a list of “only emissions-related OBD” DTCs which satisfy a client-defined status mask
by sending a request with the sub-function byte set to reportEmissionsRelatedOBDDTCByStatusMask. This
sub-function allows the client to request the server to report all “emissions-related OBD” DTCs that are
“testFailed” OR “confirmed” OR “etc.” The evaluation shall be done as follows. The server shall perform a bit-
wise logical AND-ing operation between the mask specified in the client’s request and the actual status
associated with each “emissions-related OBD” DTC supported by the server. In addition to the
DTCStatusAvailabilityMask, the server shall return all “emissions-related OBD” DTCs for which the result of
the AND-ing operation is non-zero [i.e. (statusOfDTC & DTCStatusMask) != 0]. If the client specifies a status
mask that contains bits that the server does not support, then the server shall process the DTC information
using only the bits that it does support. If no “emissions-related OBD” DTCs within the server match the
masking criteria specified in the client’s request, no DTC or status information shall be provided following the
DTCStatusAvailabilityMask byte in the positive response message.

“Emissions-related OBD” DTC status information shall be cleared upon a successful
ClearDiagnosticInformation request from the client (see DTC status bit definitions in D.2 for further
descriptions on the DTC status bit handling in case of reception of a ClearDiagnosticInformation service
request in the server).

11.3.1.18 Retrieving a list of "prefailed" DTC status

The client can retrieve a list of all current “prefailed” DTCs which have or have not yet been detected as
“pending” or “confirmed” at the time of the client’s request. The intention of the DTCFaultDetectionCounter is a
simple method to identify a growing or intermittent problem which can not be identified/read by the
statusOfDTC byte of a particular DTC. The internal implementation of the DTCFaultDetectionCounter shall be
vehicle-manufacturer-specific. The use of “prefailed” DTCs is to speed up failure detection during testing in the
manufacturing plants for DTCs that require a maturation time unacceptable to manufacturing testing. The
service has a similar use case after repairing or installing new components.

11.3.1.19 Retrieving a list of DTCs with “permanentDTC” status

The client can retrieve a list of “permanentDTC” status. DTCs which have the status “permanentDTC” have
been previously cleared by the clearDiagnosticInformation service but remain in the non-volatile memory of
the server until the appropriate monitors for each DTC have successfully passed.

Permanent DTCs shall be stored in non-volatile memory. These DTCs cannot be cleared by any test
equipment (e.g. on-board tester, off-board tester). The OBD system shall clear these DTCs itself by
completing and passing the on-board monitor. This prevents clearing DTCs simply by disconnecting the
battery.

A confirmed DTC shall be stored as a permanent DTC no later than the end of the ignition cycle and
subsequently at all times that the confirmed DTC is commanding the Malfunction Indicator on (e.g. for
currently failing systems, but not during the 40 warm-up cycle self-healing process).

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 163

Permanent DTCs shall be erasable if the engine control module is reprogrammed and the readiness status for
all monitored components and systems is set to “not complete.”

11.3.2 Request message

11.3.2.1 Request message definition

The following tables show the different structures of the ReadDTCInformation request message, based on the
sub-function parameter used.

Table 242 — Request message definition — sub-function = reportNumberOfDTCByStatusMask,
reportByStatusMask, reportMirrorMemoryDTCByStatusMask,

reportNumberOfMirrorMemoryDTCByStatusMask,
reportNumberOfEmissionsRelatedOBDDTCByStatusMask,

reportEmissionsRelatedOBDDTCByStatusMask

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation request Service Id M 19 RDTCI

#2 sub-function = [
reportNumberOfDTCByStatusMask
reportDTCByStatusMask
reportMirrorMemoryDTCByStatusMask
reportNumberOfMirrorMemoryDTCByStatusMask
reportNumberOfEmissionsRelatedOBDDTCByStatusMask
reportEmissionsRelatedOBDDTCByStatusMask]

M
01
02
0F
11
12
13

LEV_
RNODTCBSM

RDTCBSM
RMMDTCBSM

RNOMMDTCBSM
RNOOBDDTCBSM

ROBDDTCBSM

#3 DTCStatusMask M 00-FF DTCSM

Table 243 — Request message definition — sub-function = reportDTCSnapshotIdentification,
reportDTCSnapshotRecordByDTCNumber

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation request Service Id M 19 RDTCI

#2 sub-function = [
reportDTCSnapshotIdentification
reportDTCSnapshotRecordByDTCNumber]

M
03
04

LEV_
RDTCSSI

RDTCSSBDTC

#3
#4
#5

DTCMaskRecord[] = [
DTCHighByte
DTCMiddleByte
DTCLowByte]

Ca
C
C

00-FF
00-FF
00-FF

DTCMREC_
DTCHB
DTCMB
DTCLB

#6 DTCSnapshotRecordNumber C 00-FF DTCSSRN

a The C DTCMaskRecord record and DTCSnapshotRecordNumber parameters are only present if the sub-function parameter is
equal to reportDTCSnapshotRecordByDTCNumber.

Table 244 — Request message definition — sub-function = reportDTCSnapshotByRecordNumber

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation request Service Id M 19 RDTCI

#2 sub-function = [
reportDTCSnapshotRecordByRecordNumber]

M
05

LEV_
RDTCSSBRN

#3 DTCSnapshotRecordNumber M 00-FF DTCSSRN

ISO 14229:2006(E)

164 © ISO 2006 – All rights reserved

Table 245 — Request message definition — sub-function =
reportDTCExtendedDataRecordByDTCNumber,

reportMirrorMemoryDTCExtendedDataRecordByDTCNumber

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation request Service Id M 19 RDTCI

#2 sub-function = [
reportDTCExtendedDataRecordByDTCNumber
reportMirrorMemoryDTCExtendedDataRecordByDTCNumber]

M
06
10

LEV_
RDTCEDRBDN
RMMDEDRBDN

#3
#4
#5

DTCMaskRecord[] = [
DTCHighByte
DTCMiddleByte
DTCLowByte]

M
M
M

00-FF
00-FF
00-FF

DTCMREC_
DTCHB
DTCMB
DTCLB

#6 DTCExtendedDataRecordNumber M 00-FF DTCEDRN

Table 246 — Request message definition — sub-function =
reportNumberOfDTCBySeverityMaskRecord, reportDTCSeverityInformation

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation request Service Id M 19 RDTCI

#2 sub-function = [
reportNumberOfDTCBySeverityMaskRecord
reportDTCBySeverityMaskRecord]

M
07
08

LEV_
RNODTCBSMR

RDTCBSMR

#3
#4

DTCSeverityMaskRecord[] = [
DTCSeverityMask
DTCStatusMask]

M
M

00-FF
00-FF

DTCSVMREC_
DTCSVM
DTCSM

Table 247 — Request message definition — sub-function = reportSeverityInformationOfDTC

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation request Service Id M 19 RDTCI

#2 sub-function = [
reportSeverityInformationOfDTC]

M
09

LEV_
RSIODTC

#3
#4
#5

DTCMaskRecord[] = [
DTCHighByte
DTCMiddleByte
DTCLowByte]

M
M
M

00-FF
00-FF
00-FF

DTCMREC_
DTCHB
DTCMB
DTCLB

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 165

Table 248 — Request message definition — sub-function = reportSupportedDTC,
reportFirstTestFailedDTC, reportFirstConfirmedDTC, reportMostRecentTestFailedDTC,

reportMostRecentConfirmedDTC, reportDTCFaultDetectionCounter, reportDTCWithPermanentStatus

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation request Service Id M 19 RDTCI

#2 sub-function = [
reportSupportedDTC
reportFirstTestFailedDTC
reportFirstConfirmedDTC
reportMostRecentTestFailedDTC
reportMostRecentConfirmedDTC
reportDTCFaultDetectionCounter
reportDTCWithPermanentStatus]

M
0A
0B
0C
0D
0E
14
15

LEV_
RSUPDTC
RFTFDTC
RFCDTC

RMRTFDTC
RMRCDTC
RDTCFDC
RDTCWPS

11.3.2.2 Request message sub-function parameter $Level (LEV_) definition

The sub-function parameters are used by this service to select one of the DTC report types specified in
Table 249. Explanations and usage of the possible levels are detailed below
[suppressPosRspMsgIndicationBit (bit 7) not shown].

Table 249 — Request message sub-function definition

Hex
(bit 6-0) Description Cvt Mnemonic

00 ISOSAEReserved M ISOSAERESRVD

 This value is reserved by this document for future definition.

01 reportNumberOfDTCByStatusMask U RNODTCBSM

 This parameter specifies that the server shall transmit to the client the number of
DTCs matching a client-defined status mask.

02 reportDTCByStatusMask M RDTCBSM

 This parameter specifies that the server shall transmit to the client a list of DTCs
and corresponding statuses matching a client-defined status mask.

03 reportDTCSnapshotIdentification U RDTCSSI

 This parameter specifies that the server shall transmit to the client all DTCSnapshot
data record identifications [DTC number(s) and DTCSnapshot record number(s)].

04 reportDTCSnapshotRecordByDTCNumber U RDTCSSBDTC

 This parameter specifies that the server shall transmit to the client the
DTCSnapshot record(s) associated with a client-defined DTC number and
DTCSnapshot record number (FF hex for all records).

05 reportDTCSnapshotRecordByRecordNumber U RDTCSSBRN

 This parameter specifies that the server shall transmit to the client the
DTCSnapshot record(s) associated with a client-defined DTCSnapshot record
number (FF hex for all records).

Note that this sub-function parameter can only be supported if the
DTCSnapshotRecordNumber is unique to the server (each record number exists
only once in the server) and not unique to a DTC.

ISO 14229:2006(E)

166 © ISO 2006 – All rights reserved

Table 249 (continued)

Hex
(bit 6-0) Description Cvt Mnemonic

06 reportDTCExtendedDataRecordByDTCNumber U RDTCEDRBDN

 This parameter specifies that the server shall transmit to the client the
DTCExtendedData record(s) associated with a client-defined DTC number and
DTCExtendedData record number (FF hex for all records, FE hex for all OBD
records).

07 reportNumberOfDTCBySeverityMaskRecord U RNODTCBSMR

 This parameter specifies that the server shall transmit to the client the number of
DTCs matching a client-defined severity mask record.

08 reportDTCBySeverityMaskRecord U RDTCBSMR

 This parameter specifies that the server shall transmit to the client a list of DTCs
and corresponding statuses matching a client-defined severity mask record.

09 reportSeverityInformationOfDTC U RSIODTC

 This parameter specifies that the server shall transmit to the client the severity
information of a specific DTC specified in the client request message.

0A reportSupportedDTC U RSUPDTC

 This parameter specifies that the server shall transmit to the client a list of all DTCs
and corresponding statuses supported within the server.

0B reportFirstTestFailedDTC U RFTFDTC

 This parameter specifies that the server shall transmit to the client the first failed
DTC to be detected by the server since the last clearance of diagnostic information.
Note that the information reported via this sub-function parameter shall be
independent of whether or not the DTC was confirmed or aged.

0C reportFirstConfirmedDTC U RFCDTC

 This parameter specifies that the server shall transmit to the client the first
confirmed DTC to be detected by the server since the last clearance of diagnostic
information.

The information reported via this sub-function parameter shall be independent of the
aging process of confirmed DTCs (e.g. if a DTC ages such that its status is allowed
to be reset, the first confirmed DTC record shall continue to be preserved by the
server, regardless of any other DTCs that become confirmed afterwards).

0D reportMostRecentTestFailedDTC U RMRTFDTC

 This parameter specifies that the server shall transmit to the client the most recent
failed DTC to be detected by the server since the last clearance of diagnostic
information. Note that the information reported via this sub-function parameter shall
be independent of whether or not the DTC was confirmed or aged.

0E reportMostRecentConfirmedDTC U RMRCDTC

 This parameter specifies that the server shall transmit to the client the most recent
confirmed DTC to be detected by the server since the last clearance of diagnostic
information.

Note that the information reported via this sub-function parameter shall be
independent of the aging process of confirmed DTCs (e.g. if a DTC ages such that
its status is allowed to be reset, the first confirmed DTC record shall continue to be
preserved by the server, assuming no other DTCs become confirmed afterwards).

0F reportMirrorMemoryDTCByStatusMask U RMMDTCBSM

 This parameter specifies that the server shall transmit to the client a list of DTCs out
of the DTC mirror memory and corresponding statuses matching a client-defined
status mask.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 167

Table 249 (continued)

Hex
(bit 6-0) Description Cvt Mnemonic

10 reportMirrorMemoryDTCExtendedDataRecordByDTCNumber U RMMDEDRBDN

 This parameter specifies that the server shall transmit to the client the
DTCExtendedData record(s), out of the DTC mirror memory, associated with a
client-defined DTC number and DTCExtendedData record number (FF hex for all
records) DTCs.

11 reportNumberOfMirrorMemoryDTCByStatusMask U RNOMMDTCBSM

 This parameter specifies that the server shall transmit to the client the number of
DTCs out of the mirror memory matching a client-defined status mask.

12 reportNumberOfEmissionsRelatedOBDDTCByStatusMask U RNOOBDDTCBSM

 This parameter specifies that the server shall transmit to the client the number of
emissions-related OBD DTCs matching a client-defined status mask. The number
of OBD DTCs reported shall be only those which are required to be compatible with
emissions-related legal requirements.

13 reportEmissionsRelatedOBDDTCByStatusMask U ROBDDTCBSM

 This parameter specifies that the server shall transmit to the client a list of
emissions-related OBD DTCs and corresponding statuses matching a
client-defined status mask. The list of OBD DTCs reported shall be only those
which are required to be compatible with emissions-related legal requirements.

14 reportDTCFaultDetectionCounter U RDTCFDC

 This parameter specifies that the server shall transmit to the client a list of current
“prefailed” DTCs which have or have not yet been detected as “pending” or
“confirmed”.

The intention of the DTCFaultDetectionCounter is to provide a simple method by
which to identify a growing or intermittent problem which can not be identified/read
by the statusOfDTC byte of a particular DTC. The internal implementation of the
DTCFaultDetectionCounter shall be vehicle-manufacturer-specific (e.g. number of
bytes, signed versus unsigned, etc.) but the reported value shall be a scaled
one-byte signed value so that +127 (7F hex) represents a test result of “failed” and
any other non-zero positive value represents a test result of “prefailed”. However,
DTCs with DTCFaultDetectionCounter with the value +127 shall not be reported
according to the rule stated below. The DTCFaultDetectionCounter shall be
incremented by a vehicle-manufacturer-specific amount each time the test logic
runs and indicates a fail for that test run.

A reported DTCFaultDetectionCounter value greater than zero and less than +127
(i.e. 01 hex – 7E hex) indicates that the DTC enable criteria were met and that a
non-completed test result prefailed at least in one condition or threshold.

Only DTCs with DTCFaultDetectionCounters with a non-zero positive value less
than +127 (7F hex) shall be reported.

The DTCFaultDetectionCounter shall be decremented by a vehicle-manufacturer-
specific amount each time the test logic runs and indicates a pass for that test run.
If the DTCFaultDetectionCounter is decremented to zero or below, the DTC shall
no longer be reported in the positive response message. The value of the
DTCFaultDetectionCounter shall not be maintained between operation cycles.

If a ClearDiagnosticInformation service request is received, the
DTCFaultDetectionCounter value shall be reset to zero for all DTCs. Additional
reset conditions shall be defined by the vehicle manufacturer. Refer to D.5 for
example implementation details.

ISO 14229:2006(E)

168 © ISO 2006 – All rights reserved

Table 249 (continued)

Hex
(bit 6-0) Description Cvt Mnemonic

15 reportDTCWithPermanentStatus U RDTCWPS

 This parameter specifies that the server shall transmit to the client a list of DTCs
with “permanentDTC” status. DTCs which have the status “permanentDTC” have
been previously cleared by the clearDiagnosticInformation service but remain in the
non-volatile memory of the server until the appropriate monitors for each DTC have
successfully passed.

16 - 7F ISOSAEReserved M ISOSAERESRVD

 This value is reserved by this document for future definition.

11.3.2.3 Request message data parameter definition

Table 250 specifies the data parameter definitions for this service.

Table 250 — Request data parameter definition

Definition

DTCStatusMask

The DTCStatusMask contains eight (8) DTC status bits. The definitions for each of the eight (8) bits can be found in D.2.
This byte is used in the request message to allow a client to request DTC information for the DTC's whose status
matches the DTCStatusMask. A DTC's status matches the DTCStatusMask if any one of the DTCs actual status bits is
set to 1 and the corresponding status bit in the DTCStatusMask is also set to 1 (i.e. if the DTCStatusMask is bit-wise
logically ANDed with the DTC's actual status and the result is non-zero, then a match has occurred). If the client specifies
a status mask that contains bits that the server does not support, then the server shall process the DTC information
using only the bits that it does support.

DTCMaskRecord [DTCHighByte, DTCMiddleByte, DTCLowByte]

DTCMaskRecord is a three-byte value containing DTCHighByte, DTCMiddleByte and DTCLowByte, which together
represent a unique identification number for a specific diagnostic trouble code supported by a server.

The definition of the three-byte DTC number allows for several ways of coding DTC information. It can be done
⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the ISO 15031-6

specification (this format is identified by the DTCFormatIdentifier = ISO15031-6DTCFormat), or
⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to ISO 14229, which does

not specify any decoding method and therefore allows a vehicle-manufacturer-defined decoding method (this format
is identified by the DTCFormatIdentifier = ISO14229-1DTCFormat), or

⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the SAE J1939-73
specification (this format is identified by the DTCFormatIdentifier = SAEJ1939-73DTCFormat), or

⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to ISO 11992-4 (this
format is identified by the DTCFormatIdentifier = ISO11992-4DTCFormat).

DTCSnapshotRecordNumber

DTCSnapshotRecordNumber is a one-byte value indicating the number of the specific DTCSnapshot data records
requested for a client-defined DTCMaskRecord via the
reportDTCSnapshotByDTCNumber/reportDTCSnapshotByRecordNumber sub-functions. For emissions-related servers
(OBD-compliant ECUs), the DTCSnapshot data record number 00 hex shall be the equivalent data record as specified in
ISO 15031-5 service 02 hex frame number 00 hex. If the server supports multiple DTCSnapshot data records, the range
of 01 hex through FE hex shall be used. A value of FF hex requests the server to report all stored DTCSnapshot data
records at once.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 169

Table 250 (continued)

Definition

DTCExtendedDataRecordNumber

DTCExtendedDataRecordNumber is a one-byte value indicating the number of the specific DTCExtendedData record
requested for a client-defined DTCMaskRecord via the reportDTCExtendedDataRecordByDTCNumber sub-function. For
emissions-related servers (OBD-compliant ECUs), the DTCExtendedDataRecordNumber 00 hex shall be reserved for
future OBD use.

The following DTCExtendedDataRecordNumber ranges are reserved.
⎯ A value of 00 hex is reserved by ISO/SAE.
⎯ A value of 01 hex - 8F hex requests the server to report the vehicle-manufacturer-specific stored DTCExtendedData

records.
⎯ A value of 90 hex - EF hex requests the server to report legislated OBD stored DTCExtendedData records.
⎯ A value of F0 hex – FD hex is reserved by ISO/SAE for future reporting of groups in a single response message.
⎯ A value of FE hex requests the server to report all legislated OBD stored DTCExtendedData records in a single

response message.
⎯ A value of FF hex requests the server to report all stored DTCExtendedData records in a single response message.

DTCSeverityMaskRecord [DTCSeverityMask, DTCStatusMask]

DTCSeverityMaskRecord is a two-byte value containing the DTCSeverityMask and the DTCStatusMask (see D.2 and
D.3).

DTCSeverityMask

The DTCSeverityMask contains three (3) DTC severity bits. The definitions for each of the three (3) bits can be found in
D.3. This byte is used in the request message to allow a client to request DTC information for the DTCs whose severity
definition matches the DTCSeverityMask. A DTC’s severity definition matches the DTCSeverityMask if any one of the
DTC’s actual severity bits is set to 1 and the corresponding severity bit in the DTCSeverityMask is also set to 1 (i.e. if the
DTCSeverityMask is bit-wise logically ANDed with the DTC's actual severity and the result is non-zero, then a match has
occurred).

11.3.3 Positive response message

11.3.3.1 Positive response message definition

Positive response(s) to the ReadDTCInformation service requests depend on the sub-function in the service
request.

The tables below define the response message formats of each sub-function parameter.

Table 251 describes the positive response format for the following sub-functions of this service:
reportNumberOfDTCByStatusMask, reportNumberOfDTCBySeverityMaskRecord, reportNumberOf-
MirrorMemoryDTCByStatusMask and reportNumberOfEmissionsRelatedOBDDTCByStatusMask.

ISO 14229:2006(E)

170 © ISO 2006 – All rights reserved

Table 251 — Response message definition — sub-function = reportNumberOfDTCByStatusMask,
reportNumberOfDTCBySeverityMaskRecord, reportNumberOfMirrorMemoryDTCByStatusMask,

reportNumberOfEmissionsRelatedOBDDTCByStatusMask

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation response Service Id M 59 RDTCIPR

#2 reportType = [
reportNumberOfDTCByStatusMask
reportNumberOfDTCBySeverityMaskRecord
reportNumberOfMirrorMemoryDTCByStatusMask
reportNumberOfEmissionsRelatedOBDDTCByStatusMask]

M
01
07
11
12

LEV_
RNODTCBSM

RNODTCBSMR
RNOMMDTCBSM
RNOOBDDTCBSM

#3 DTCStatusAvailabilityMask M 00-FF DTCSAM

#4 DTCFormatIdentifier = [
ISO15031-6DTCFormat
ISO14229-1DTCFormat
SAEJ1939-73DTCFormat
ISO11992-4DTCFormat]

M
00
01
02
03

DTCFID_
15031-6DTCF
14229-1DTCF
J1939-73DTCF
11992-4DTCF

#5
#6

DTCCount[] = [
DTCCountHighByte
DTCCountLowByte]

M
M

00-FF
00-FF

DTCC_
DTCCHB
DTCCLB

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 171

Table 252 describes the positive response format for the following sub-functions of this service:
reportDTCByStatusMask, reportSupportedDTCs, reportFirstTestFailedDTC, reportFirstConfirmedDTC,
reportMostRecentTestFailedDTC, reportMostRecentConfirmedDTC, reportMirrorMemoryDTCByStatusMask,
reportEmissionsRelatedOBDDTCByStatusMask and reportDTCWithPermanentStatus.

Table 252 — Response message definition — sub-function = reportDTCByStatusMask,
reportSupportedDTCs, reportFirstTestFailedDTC, reportFirstConfirmedDTC,

reportMostRecentTestFailedDTC, reportMostRecentConfirmedDTC,
reportMirrorMemoryDTCByStatusMask, reportEmissionsRelatedOBDDTCByStatusMask,

reportDTCWithPermanentStatus

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation response Service Id M 59 RDTCIPR

#2 reportType = [
reportDTCByStatusMask
reportSupportedDTCs
reportFirstTestFailedDTC
reportFirstConfirmedDTC
reportMostRecentTestFailedDTC
reportMostRecentConfirmedDTC
reportMirrorMemoryDTCByStatusMask
reportEmissionsRelatedOBDDTCByStatusMask
reportDTCWithPermanentStatus]

M
02
0A
0B
0C
0D
0E
0F
13
15

LEV_
RDTCBSM
RSUPDTC
RFTFDTC
RFCDTC

RMRTFDTC
RMRCDTC

RMMDTCBSM
ROBDDTCBSM

RDTCWPS

#3 DTCStatusAvailabilityMask M 00-FF DTCSAM

#4
#5
#6
#7
#8
#9

#10
#11

:
#n-3
#n-2
#n-1
#n

DTCAndStatusRecord[] = [
DTCHighByte#1
DTCMiddleByte#1
DTCLowByte#1
statusOfDTC#1
DTCHighByte#2
DTCMiddleByte#2
DTCLowByte#2
statusOfDTC#2
 :
DTCHighByte#m
DTCMiddleByte#m
DTCLowByte#m
statusOfDTC#m]

C1

a
C1
C1
C1
C2

b
C2
C2
C2
:

C2
C2
C2
C2

00-FF
00-FF
00-FF
00-FF
00-FF
00-FF
00-FF
00-FF

:
00-FF
00-FF
00-FF
00-FF

DTCASR_
DTCHB
DTCMB
DTCLB
SODTC
DTCHB
DTCMB
DTCLB
SODTC

:
DTCHB
DTCMB
DTCLB
SODTC

a The C1 parameter is only present if reportType = reportDTCByStatusMask, reportSupportedDTCs, reportFirstTestFailedDTC,
reportFirstConfirmedDTC, reportMostRecentTestFailedDTC, reportMostRecentConfirmedDTC, reportMirrorMemoryDTCByStatusMask,
reportEmissionsRelatedOBDDTCByStatusMask, reportDTCWithPermanentStatus and DTC information is available to be reported.
b The C2 parameter is only present if reportType = reportSupportedDTCs, reportDTCByStatusMask,
reportMirrorMemoryDTCByStatusMask, reportEmissionsRelatedOBDDTCByStatusMask, reportDTCWithPermanentStatus and more
than one set of DTC information is available to be reported.

ISO 14229:2006(E)

172 © ISO 2006 – All rights reserved

Table 253 describes the positive response format for the following sub-function of this service:
reportDTCSnapshotIdentification.

Table 253 — Response message definition — sub-function = reportSnapshotIdentification

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation response Service Id M 59 RDTCIPR

#2 reportType = [
reportDTCSnapshotIdentification]

M
03

LEV_
RDTCSSI

#3
#4
#5

DTCRecord[] #1 = [
DTCHighByte#1
DTCMiddleByte#1
DTCLowByte#1]

CB1B

a

CB1B
CB1B

00-FF
00-FF
00-FF

DTCASR_
DTCHB
DTCMB
DTCLB

#6 DTCSnapshotRecordNumber #1 C B1B 00-FF DTCSSRN

: : : : :

#n-3
#n-2
#n-1

DTCRecord[] #m = [
DTCHighByte#m
DTCMiddleByte#m
DTCLowByte#m]

CB2B

b

CB2B
CB2B

00-FF
00-FF
00-FF

DTCASR_
DTCHB
DTCMB
DTCLB

#n DTCSnapshotRecordNumber #m C B2B 00-FF DTCSSRN
a For CB1, the DTCRecord and DTCSnapshotRecordNumber parameter is only present if at least one DTCSnapshot record is
available to be reported.
b For CB2, the DTCRecord and DTCSnapshotRecordNumber parameter is only present if more than one DTCSnapshot record is
available to be reported.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 173

�Table 254� describes the positive response format for the following sub-function of this service:
reportDTCSnapshotRecordByDTCNumber.

Table 254 — Response message definition — sub-function = reportDTCSnapshotRecordByDTCNumber

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation response Service Id M 59 RDTCIPR

#2 reportType = [
reportDTCSnapshotRecordByDTCNumber]

M
04

LEV_
RDTCSSBDTC

#3
#4
#5
#6

DTCAndStatusRecord[] = [
DTCHighByte
DTCMiddleByte
DTCLowByte
statusOfDTC]

M
M
M
M

00-FF
00-FF
00-FF
00-FF

DTCASR_
DTCHB
DTCMB
DTCLB
SODTC

#7 DTCSnapshotRecordNumber #1 C B1B
a

 00-FF DTCSSRN

#8 DTCSnapshotRecordNumberOfIdentifiers #1 C B1B 00-FF DTCSSRNI

#9
:

#9+k-1
#9+k

:
#9+k+(p-1)

:
#r-(m-1)-2

:
#r-(m-1)-1
#r-(m-1)

:
#r

DTCSnapshotRecord[] #1 = [
dataIdentifier#1 byte #1 (MSB)
 :
dataIdentifier#1 byte #k
snapshotData#1 byte #1
 :
snapshotData#1 byte #p
 :
dataIdentifier#w byte #1 (MSB)
 :
dataIdentifier#w byte #k
snapshotData#w byte #1
 :
snapshotData#w byte #m]

CB1B
:

CB1B
CB1B
CB1B
CB1B
:

CB2B
b

:
CB2B
CB2B
CB2B
CB2B

00-FF

:
00-FF
00-FF

:
00-FF

:
00-FF

:
00-FF
00-FF

:
00-FF

DTCSSR_
DIDB11

:
DIDB1k
SSD11

:
SSD1p

:
DIDB21

:
DIDB2k
SSD21

:
SSD2m

: : : : :

#t DTCSnapshotRecordNumber #x C B3
c
B 00-FF DTCSSRN

#t+1 DTCSnapshotRecordNumberOfIdentifiers #x C B3B 00-FF DTCSSRNI

#t+2

:
#t+2-1+k
#t+2+k

:
#t+2+k+(p-1)

:
#n-(u-1)-2

:
#n-(u-1)-1
#n-(u-1)

:
#n

DTCSnapshotRecord[] #x = [
dataIdentifier#1 byte #1 (MSB)
 :
dataIdentifier#1 byte #k
snapshotData#1 byte #1
 :
snapshotData#1 byte #p
 :
dataIdentifier#w byte #1 (MSB)
 :
dataIdentifier#w byte #k
snapshotData#w byte #1
 :
snapshotData#w byte #u]

CB3B
:

CB3B
CB3B
CB3B
CB3B
:

CB4B
b

:
CB4B
CB4B
CB4B
CB4B

00-FF

:
00-FF
00-FF

:
00-FF

:
00-FF

:
00-FF
00-FF

:
00-FF

DTCSSR_
DIDB11

:
DIDB1k
SSD11

:
SSD1p

:
DIDB21

:
DIDB2k
SSD21

:
SSD2u

a For CB1, the DTCSnapshotRecordNumber and the first dataIdentifier/snapshotData combination in the DTCSnapshotRecord
parameter are only present if at least one DTCSnapshot record is available to be reported (DTCSnapshotRecordNumber unequal to FF
hex in the request or only one record is available to be reported if DTCSnapshotRecordNumber is set to FF hex in the request).
b For C2 and CB4, there are multiple dataIdentifier/snapshotData combinations allowed to be present in a single DTCSnapshotRecord.
This can be the case for the situation where a single dataIdentifier only references an integral part of the data. When the dataIdentifier
references a block of data then a single dataIdentifier/snapshotData combination can be used.
c For CB3, the DTCSnapshotRecordNumber and the first dataIdentifier/snapshotData combination in the DTCSnapshotRecord
parameter are only present if all records are requested to be reported (DTCSnapshotRecordNumber set to FF hex in the request) and
more than one record is available to be reported.

ISO 14229:2006(E)

174 © ISO 2006 – All rights reserved

Table 255 describes the positive response format for the following sub-function of this service:
reportDTCSnapshotRecordByRecordNumber.

Table 255 — Response message definition — sub-function =
reportDTCSnapshotRecordByRecordNumber

A_Data byte Parameter name Cvt Hex value Mnemonic
#1 ReadDTCInformation response Service Id M 59 RDTCIPR
#2 reportType = [

reportDTCSnapshotRecordByRecordNumber]
M

05
LEV_

RDTCSSBRN
#3 DTCSnapshotRecordNumber #1 M 00-FF DTCEDRN

#4
#5
#6
#7

DTCAndStatusRecord[] #1 = [
DTCHighByte
DTCMiddleByte
DTCLowByte
statusOfDTC]

CB1B

a

CB1B
CB1B
CB1B

00-FF
00-FF
00-FF
00-FF

DTCASR_
DTCHB
DTCMB
DTCLB
SODTC

#8 DTCSnapshotRecordNumberOfIdentifiers #1 C B1B 00-FF DTCSSRNI

#9
:

#9+k-1
#9+k

:
#9+k+(p-1)

:
???

:
#r-(m-1)-1
#r-(m-1)

:
#r

DTCSnapshotRecord[] #1 = [
dataIdentifier#1 byte #1 (MSB)
 :
dataIdentifier#1 byte #k
snapshotData#1 byte #1
 :
snapshotData#1 byte #p
 :
dataIdentifier#w byte #1 (MSB)
 :
dataIdentifier#w byte #k
snapshotData#w byte #1
 :
snapshotData#w byte #m]

CB1B
:

CB1B
CB1B
:

CB1B
:

CB2B
b

:
CB2B
CB2B
:

CB2B

00-FF

:
00-FF
00-FF

:
00-FF

:
00-FF

:
00-FF
00-FF

:
00-FF

DTCSSR_
DIDB11

:
DIDB1k
SSD11

:
SSD1p

:
DIDB21

:
DIDB2k
SSD21

:
SSD2m

: : : : :
#t DTCSnapshotRecordNumber #x C B2B 00-FF DTCSSRN

#t+1
#t+2
#t+3
#t+4

DTCAndStatusRecord[] #x = [
DTCHighByte
DTCMiddleByte
DTCLowByte
statusOfDTC]

CB2B
CB2B
CB2B
CB2B

00-FF
00-FF
00-FF
00-FF

DTCASR_
DTCHB
DTCMB
DTCLB
SODTC

#t+5 DTCSnapshotRecordNumberOfIdentifiers #x C B2B 00-FF DTCSSRNI

#t+6
:

#t+6+k-1
#t+6+k

:
#t+6+k+(p-1)

:
???

:
#n-(u-1)-1
#n-(u-1)

:
#n

DTCSnapshotRecord[] #x = [
dataIdentifier#1 byte #1 (MSB)
 :
dataIdentifier#1 byte #k
snapshotData#1 byte #1
 :
snapshotData#1 byte #p
 :
dataIdentifier#w byte #1 (MSB)
 :
dataIdentifier#w byte #k
snapshotData#w byte #1
 :
snapshotData#w byte #u]

CB3B

c

:
CB3B
CB3B
:

CB3B
:

CB4B
b

:
CB4B
CB4B
:

CB4B

00-FF

:
00-FF
00-FF

:
00-FF

:
00-FF

:
00-FF
00-FF

:
00-FF

DTCSSR_
DIDB11

:
DIDB1k
SSD11

:
SSD1p

:
DIDB21

:
DIDB2k
SSD21

:
SSD2u

a For CB1, the DTCAndStatusRecord and the first dataIdentifier/snapshotData combination in the DTCSnapshotRecord parameter are
only present if at least one DTCSnapshot record is available to be reported (DTCSnapshotRecordNumber unequal to FF hex in the
request or only one record is available to be reported if DTCSnapshotRecordNumber is set to FF hex in the request).
b For C2 and CB4, there are multiple dataIdentifier/snapshotData combinations allowed to be present in a single DTCSnapshotRecord.
This can be the case for the situation where a single dataIdentifier only references an integral part of the data. When the dataIdentifier
references a block of data then a single dataIdentifier/snapshotData combination can be used.
c For CB3, the DTCSnapshotRecordNumber, DTCAndStatusRecord and the first dataIdentifier/snapshotData combination in the
DTCSnapshotRecord parameter are only present if all records are requested to be reported (DTCSnapshotRecordNumber set to FF hex
in the request) and more than one record is available to be reported.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 175

Table 256 describes the positive response format for the following sub-functions of this service:
reportDTCExtendedDataRecordByDTCNumber and
reportMirrorMemoryDTCExtendedDataRecordByDTCNumber.

Table 256 — Response message definition — sub-function =
reportDTCExtendedDataRecordByDTCNumber and

reportMirrorMemoryDTCExtendedDataRecordByDTCNumber

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation response Service Id M 59 RDTCIPR

#2 reportType = [
reportDTCExtendedDataRecordByDTCNumber
reportMirrorMemoryDTCExtendedDataRecordByDTCNumber]

M
06
10

LEV_
RDTCEDRBDN
RMMDEDRBDN

#3
#4
#5
#6

DTCAndStatusRecord[] = [
DTCHighByte
DTCMiddleByte
DTCLowByte
statusOfDTC]

M
M
M
M

00-FF
00-FF
00-FF
00-FF

DTCASR_
DTCHB
DTCMB
DTCLB
SODTC

#7 DTCExtendedDataRecordNumber #1 CB1B
a

 00-FF DTCEDRN

#8
:

#8+(p-1)

DTCExtendedDataRecord[] #1 = [
extendedData #1 byte #1
 :
extendedData #1 byte #p]

CB1B
CB1B
CB1B

00-FF

:
00-FF

DTCSSR_
EDD11

:
EDD1p

: : : : :

#t DTCExtendedDataRecordNumber #x CB2B
b

 00-FF DTCEDRN

#t+1

:
#t+1+(q-1)

DTCExtendedDataRecord[] #x = [
extendedData #x byte #1
 :
extendedData #x byte #q]

CB2B
CB2B
CB2B

00-FF
00-FF
00-FF

DTCSSR_
EDDx1

:
EDDxq

a For CB1, the DTCExtendedDataRecordNumber and the extendedData in the DTCExtendedDataRecord parameter are only present
if at least one DTCExtendedDataRecord is available to be reported (DTCExtendedDataRecordNumber unequal to FF hex in the request
or only one record is available to be reported if DTCExtendedDataRecordNumber is set to FF hex in the request).
b For CB2, the DTCExtendedDataRecordNumber and the extendedData in the DTCExtendedDataRecord parameter are only present
if all records are requested to be reported (DTCExtendedDataRecordNumber set to FF hex in the request) and more than one record is
available to be reported.

ISO 14229:2006(E)

176 © ISO 2006 – All rights reserved

Table 257� describes the positive response format for the following sub-functions of this service:
reportDTCBySeverityMaskRecord and reportSeverityInformationOfDTC.

Table 257 — Response message definition — sub-function = reportDTCBySeverityMaskRecord,
reportSeverityInformationOfDTC

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 ReadDTCInformation response Service Id M 59 RDTCIPR

#2 reportType = [
reportDTCBySeverityMaskRecord
reportSeverityInformationOfDTC]

M
08
09

LEV_
RDTCBSMR

RSIODTC

#3 DTCStatusAvailabilityMask M 00-FF DTCSAM

#4
#5
#6
#7
#8
#9
:

#n-5
#n-4
#n-3
#n-2
#n-1
#n

DTCAndSeverityRecord[] = [
DTCSeverity #1
DTCFunctionalUnit #1
DTCHighByte #1
DTCMiddleByte #1
DTCLowByte #1
statusOfDTC #1
 :
DTCSeverity #m
DTCFunctionalUnit #m
DTCHighByte #m
DTCMiddleByte #m
DTCLowByte #m
statusOfDTC #m]

CB1B

a

CB1B
CB1B
CB1B
CB1B
CB1
B:

CB2B
b

CB2B
CB2B
CB2B
CB2B
CB2B

00-FF
00-FF
00-FF
00-FF
00-FF
00-FF

:
00-FF
00-FF
00-FF
00-FF
00-FF
00-FF

DTCASR_
DTCS

DTCFU
DTCHB
DTCMB
DTCLB
SODTC

:
DTCS

DTCFU
DTCHB
DTCMB
DTCLB
SODTC

a The CB1B parameter is only present if reportType = reportDTCBySeverityMaskRecord or reportSeverityInformationOfDTC. In case of
reportDTCBySeverityMaskRecord, this parameter has to be present if at least one DTC matches the client-defined DTC severity mask.
In case of reportSeverityInformationOfDTC, this parameter has to be present if the server supports the DTC specified in the request
message.
b The CB2B parameter record is only present if reportType = reportDTCBySeverityMaskRecord. It has to be present if more than one
DTC matches the client-defined DTC severity mask.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 177

Table 258� describes the positive response format for the following sub-function of this service:
reportDTCFaultDetectionCounter.

Table 258 — Response message definition — sub-function = reportDTCFaultDetectionCounter

A_Data byte Parameter name Cvt Hex value Mnemonic
b b b b b

#2 reportType = [
reportDTCFaultDetectionCounter]

M
14

LEV_
RDTCFDC

#4
#5
#6
#7
#8
#9

#10
#11

:
#n-3
#n-2
#n-1
#n

DTCFaultDetectionCounterRecord[] = [
DTCHighByte#1
DTCMiddleByte#1
DTCLowByte#1
DTCFaultDetectionCounter #1
DTCHighByte#2
DTCMiddleByte#2
DTCLowByte#2
DTCFaultDetectionCounter #2
 :
DTCHighByte#m
DTCMiddleByte#m
DTCLowByte#m
DTCFaultDetectionCounter #m]

C1

a
C1
C1
C1
C2

b
C2
C2
C2
:

C2
C2
C2
C2

00-FF
00-FF
00-FF
01-FF
00-FF
00-FF
00-FF
01-FF

:
00-FF
00-FF
00-FF
01-FF

DTCFDCR_
DTCHB
DTCMB
DTCLB

DTCFDC
DTCHB
DTCMB
DTCLB

DTCFDC
:

DTCHB
DTCMB
DTCLB

DTCFDC
a The CB1 parameter is only present if at least one DTC has a DTCFaultDetectionCounter with a positive value less than 7F hex.
b The CB2B parameter record is only present if more than one DTC has a DTCFaultDetectionCounter with a positive value less than 7F
hex.

11.3.3.2 Positive response message data parameter definition

Table 259� specifies the response message data parameter definitions for this service.

Table 259 — Response message data parameter definition

Definition

reportType

This parameter is an echo of bits 6 - 0 of the sub-function parameter provided in the request message from the client.

DTCAndSeverityRecord

This parameter record contains one or more groupings of DTCSeverity, DTCFunctionalUnit, DTCHighByte,
DTCMiddleByte, DTCLowByte and statusOfDTC of ISO15031-6DTCFormat, ISO14229-1DTCFormat, SAEJ1939-
73DTCFormat (see below for further details) or ISO11992-4DTCFormat.

The DTCSeverity identifies the importance of the failure of the vehicle operation and/or system function, and allows
recommended actions to be displayed for the driver. The definitions of DTCSeverities can be found in D.3. The
DTCFuncitonalUnit is a one-byte value which identifies the corresponding basic vehicle/system function which reports
the DTC. The definitions of DTCFunctionalUnits can be found in D.4.

DTCHighByte, DTCMiddleByte and DTCLowByte together represent a unique identification number for a specific
diagnostic trouble code supported by a server. The DTCHighByte and DTCMiddleByte represent a circuit or system that
is being diagnosed. The DTCLowByte represents the type of fault in the circuit or system (e.g. sensor open circuit,
sensor shorted to ground, algorithm-based failure, etc). The definition can be found in ISO 15031-6.

This parameter record contains one or more groupings of DTCSeverity, DTCFunctionalUnit, SPN (Suspect Parameter
Number), FMI (Failure Mode Identifier) and OC (Occurrence Counter) of SAEJ1939-73DTCFormat. The SPN, FMI, and
OC are defined in SAE J1939-73.

ISO 14229:2006(E)

178 © ISO 2006 – All rights reserved

Table 259 (continued)

Definition

DTCAndStatusRecord

This parameter record contains one or more groupings of DTCHighByte, DTCMiddleByte, DTCLowByte and
statusOfDTC of ISO14229-1DTCFormat, ISO15031-6DTCFormat, SAEJ1939-73DTCFormat or ISO11992-4DTCFormat.
The SAEJ1939-73DTCFormat supports the SPN (Suspect Parameter Number), FMI (Failure Mode Identifier) and OC
(Occurrence Counter) parameters. The SPN, FMI and OC are defined in SAE J1939-73.

DTCHighByte, DTCMiddleByte and DTCLowByte together represent a unique identification number for a specific
diagnostic trouble code supported by a server. The coding of the three-byte DTC number can be done
⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to the ISO 15031-6

specification (this format is identified by the DTCFormatIdentifier = ISO15031-6DTCFormat), or
⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to ISO 14229, which does

not specify any decoding method and therefore allows a vehicle-manufacturer-defined decoding method (this
format is identified by the DTCFormatIdentifier = ISO14229-1DTCFormat), or

⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to SAE J1939-73 (this
format is identified by the DTCFormatIdentifier = SAEJ1939-73DTCFormat), or

⎯ by using the decoding of the DTCHighByte, DTCMiddleByte and DTCLowByte according to ISO 11992-4 (this
format is identified by the DTCFormatIdentifier = ISO11992-4DTCFormat).

DTCRecord

This parameter record contains one or more groupings of DTCHighByte, DTCMiddleByte and DTCLowByte. The
interpretation of the DTCRecord depends on the value included in the DTCFormatIdentifier parameter as defined in this
table.

StatusOfDTC

The status of a particular DTC (e.g. DTC failed since power up, passed since power up, etc.). The definition of the bits
contained in the statusOfDTC byte can be found in D.2 of ISO 14229.

DTCStatusAvailabilityMask

A byte whose bits are defined as the same as statusOfDTC and represents the status bits that are supported by the
server. Bits that are not supported by the server shall be set to 0.

DTCFormatIdentifier

This one-byte parameter value defines the format of a DTC reported by the server:
⎯ ISO15031-6DTCFormat: This parameter value identifies the DTC format reported by the server as defined in

ISO 15031-6.
⎯ ISO14229-1DTCFormat: This parameter value identifies the DTC format reported by the server as defined in this

table by the parameter DTCAndStatusRecord.
⎯ SAEJ1939-73DTCFormat: This parameter value identifies the DTC format reported by the server as defined in

SAE J1939-73.

⎯ ISO11992-4DTCFormat: This parameter value identifies the DTC format reported by the server as defined in
ISO 11992-4.

DTCCount

This two-byte parameter refers collectively to the DTCCountHighByte and DTCCountLowByte parameters that are sent
in response to a reportNumberOfDTCByStatusMask or reportNumberOfMirrorMemoryDTC request. DTCCount provides
a count of the number of DTCs that match the DTCStatusMask defined in the client’s request.

DTCSnapshotRecordNumber

Either the echo of the DTCSnapshotRecordNumber parameter specified by the client in the
reportDTCSnapshotRecordByDTCNumber/reportDTCSnapshotRecordByRecordNumber request, or the actual
DTCSnapshotRecordNumber of a stored DTCSnapshot record.

DTCSnapshotRecordNumberOfIdentifiers

This single-byte parameter shows the number of dataIdentifiers in the immediately following DTCSnapshotRecord.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 179

Table 259 (continued)

Definition

DTCSnapshotRecord

The DTCSnapshotRecord contains a snapshot of data values from the time of the system malfunction occurrence.

DTCExtendedDataRecordNumber

Either the echo of the DTCExtendedDataRecordNumber parameter specified by the client in the
reportDTCExtendedDataRecordByDTCNumber request, or the actual DTCExtendedDataRecordNumber of a stored
DTCExtendedData record.

DTCExtendedDataRecord

The DTCExtendedDataRecord is a server-specific block of information that may contain extended status information
associated with a DTC. DTCExtendedData contains DTC parameter values, which have been identified at the time of the
request.

DTCFaultDetectionCounterRecord

The DTCFaultDetectionCounterRecord is a record including one or multiple DTC numbers and the DTC-specific
DTCFaultDetectionCounter parameter value.

DTCFaultDetectionCounter

The DTCFaultDetectionCounter reports the number of fault detection counts of a DTC.

11.3.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in �Table 260.

Table 260 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS

 This code is returned if the requested sub-function is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

31 requestOutOfRange M ROOR

 This code is returned if:

1) the client specified a DTCMaskRecord/DTCSeverityMaskRecord that was not
recognized by the server;

2) the client specified an invalid DTCSnapshotRecordNumber/
DTCExtendedDataRecordNumber.

11.3.5 Message flow examples — ReadDTCInformation

11.3.5.1 General assumption

For all examples the client requests a response message by setting the suppressPosRspMsgIndicationBit
(bit 7 of the sub-function parameter) to “FALSE” (‘0’).

ISO 14229:2006(E)

180 © ISO 2006 – All rights reserved

11.3.5.2 Example #1 — ReadDTCInformation — sub-function = reportNumberOfDTCByStatusMask

11.3.5.2.1 Example #1 overview

This example demonstrates the usage of the reportNumberOfDTCByStatusMask sub-function parameter for
confirmed DTCs (DTC status mask 08 hex), as well as various masking principles. The
DTCStatusAvailabilityMask for this sever = 2F hex.

11.3.5.2.2 Example #1 assumptions

The server supports a total of three (3) DTCs (for the sake of simplicity), which have the following states at the
time of the client request.

1) The following assumptions apply to DTC P0805-11 Clutch Position Sensor — circuit short to ground
(080511 hex), statusOfDTC 24 hex (00100100 binary).

Table 261 — statusOfDTC = 24 hex of DTC P0805-11

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is no longer failed at the time of the request.

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 0 DTC is not confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code
clear.

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be
active.

2) The following assumptions apply to DTC P0A9B-17 Hybrid Battery Temperature Sensor — circuit voltage
above threshold (0A9B17 hex), statusOfDTC 02 hex (0000 0010 binary):

Table 262 — statusOfDTC = 02 hex of DTC P0A9B-17

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is no longer failed at the time of the request.

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle.

pendingDTC 2 0 DTC was not failed on the current or previous
operation cycle.

confirmedDTC 3 0 DTC is not confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code
clear.

testFailedSinceLastClear 5 0 DTC test never failed since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be
active.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 181

3) The following assumptions apply to DTC P2522-1F A/C Request “B” — circuit intermittent (25221F hex),
statusOfDTC 2F hex (00101111 binary):

Table 263 — statusOfDTC = 2F hex of DTC P2522-1F

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 1 DTC failed at the time of the request.

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 1 DTC is confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code
clear.

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

11.3.5.2.3 Example #1 message flow

In the following example, a count of one (1) is returned to the client because only DTC P2522-1F A/C Request
“B” — circuit intermittent (25221F hex), statusOfDTC 2F hex (00101111 binary) matches the client-defined
status mask of 08 hex (0000 1000 binary).

Table 264 — ReadDTCInformation — sub-function = reportNumberOfDTCByStatusMask —
request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportNumberOfDTCByStatusMask,
suppressPosRspMsgIndicationBit = FALSE

01 RNODTCBSM

#3 DTCStatusMask 08 DTCSM

Table 265 — ReadDTCInformation — sub-function = reportNumberOfDTCByStatusMask —
positive response — example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportNumberOfDTCByStatusMask 01 RNODTCBSM

#3 DTCStatusAvailabilityMask 2F DTCSAM

#4 DTCFormatIdentifier = ISO14229-1DTCFormat 01 14229-1DTCF

#5 DTCCount [DTCCountHighByte] 00 DTCCHB

#6 DTCCount [DTCCountLowByte] 01 DTCCLB

ISO 14229:2006(E)

182 © ISO 2006 – All rights reserved

11.3.5.3 Example #2 — ReadDTCInformation — sub-function = reportDTCByStatusMask — matching
DTCs returned

11.3.5.3.1 Example #2 overview

This example demonstrates usage of the reportDTCByStatusMask sub-function parameter, as well as various
masking principles in conjunction with unsupported masking bits. This example also applies to the
sub-function parameter reportMirrorMemoryDTCByStatusMask, except that the status mask checks are
performed with the DTCs stored in the DTC mirror memory.

11.3.5.3.2 Example #2 assumptions

The server supports all status bits for masking purposes, except for bit 7 “warningIndicatorRequested”.

The server supports a total of three (3) DTCs (for the sake of simplicity), which have the following states at the
time of the client request.

1) The following assumptions apply to DTC P0A9B-17 Hybrid Battery Temperature Sensor — circuit voltage
above threshold (0A9B17 hex), statusOfDTC 24 hex (0010 0100 binary):

Table 266 — statusOfDTC = 24 hex of DTC P0A9B-17

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is no longer failed at the time of the request.

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 0 DTC is not confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

2) The following assumptions apply to DTC P2522-1F A/C Request “B” — circuit intermittent (25221F hex),
statusOfDTC 00 hex (0000 0000 binary):

Table 267 — statusOfDTC = 00 hex of DTC P2522-1F

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is not failed at the time of the request.

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle.

pendingDTC 2 0 DTC was not failed on the current or previous
operation cycle.

confirmedDTC 3 0 DTC is not confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 0 DTC test never failed since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 183

3) The following assumptions apply to DTC P0805-11 Clutch Position Sensor — circuit short to ground
(080511 hex), statusOfDTC 2F hex (0010 1111 binary):

Table 268 — statusOfDTC = 2F hex of DTC P0805-11

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 1 DTC is failed at the time of the request.

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 1 DTC is confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

11.3.5.3.3 Example #2 message flow

In the following example, DTCs P0A9B-17 (0A9B17 hex) and P0805-11 (080511 hex) are returned to the
client’s request. DTC P2522-1F (25221F hex) is not returned because its status of 00 hex does not match the
DTCStatusMask of 84 hex (as specified in the client request message in the following example). The server
shall bypass masking on those status bits it does not support.

Table 269 — ReadDTCInformation — sub-function = reportDTCByStatusMask —
request message flow example #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportDTCByStatusMask,
suppressPosRspMsgIndicationBit = FALSE

02 RDTCBSM

#3 DTCStatusMask 84 DTCSM

ISO 14229:2006(E)

184 © ISO 2006 – All rights reserved

Table 270 — ReadDTCInformation — Sub-function = reportDTCByStatusMask —
Positive response — Example #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportDTCByStatusMask 02 RDTCBSM

#3 DTCStatusAvailabilityMask 7F DTCSAM

#4 DTCAndStatusRecord#1 [DTCHighByte] 0A DTCHB

#5 DTCAndStatusRecord#1 [DTCMiddleByte] 9B DTCMB

#6 DTCAndStatusRecord#1 [DTCLowByte] 17 DTCLB

#7 DTCAndStatusRecord#1 [statusOfDTC] 24 SODTC

#4 DTCAndStatusRecord#2 [DTCHighByte] 08 DTCHB

#5 DTCAndStatusRecord#2 [DTCMiddleByte] 05 DTCMB

#6 DTCAndStatusRecord#2 [DTCLowByte] 11 DTCLB

#7 DTCAndStatusRecord#2 [statusOfDTC] 2F SODTC

11.3.5.4 Example #3 — ReadDTCInformation — sub-function = reportDTCByStatusMask — no
matching DTCs returned

11.3.5.4.1 Example #3 overview

This example demonstrates usage of the reportDTCByStatusMask sub-function parameter in the situation
where no DTCs match the client-defined DTCStatusMask.

11.3.5.4.2 Example #3 assumptions

The server supports all status bits for masking purposes, except for bit 7 “warningIndicatorRequested”.

The server supports a total of two (2) DTC's (for the sake of simplicity), which have the following states at the
time of the client request.

1) The following assumptions apply to DTC P2522-1F A/C Request “B” — circuit intermittent (25221F hex),
statusOfDTC 24 hex (0010 0100 binary):

Table 271 — statusOfDTC= 24 hex of DTC P2522-1F

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is no longer failed at the time of the request.

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 0 DTC is not confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 185

2) The following assumptions apply to DTC P0A9B-17 Hybrid Battery Temperature Sensor — circuit voltage
above threshold (0A9B17 hex), statusOfDTC 00 hex (0000 0000 binary):

Table 272 — statusOfDTC = 00 hex of DTC P0A9B-17

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is not failed at the time of the request.

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle.

pendingDTC 2 0 DTC was not failed on the current or previous
operation cycle.

confirmedDTC 3 0 DTC is not confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 0 DTC test never failed since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

The client requests the server to reportByStatusMask all DTCs having bit 0 (TestFailed) set to logical “1”.

11.3.5.4.3 Example #3 message flow

In the following example, none of the above DTCs are returned to the client’s request because none of the
DTCs has failed the test at the time of the request.

Table 273 — ReadDTCInformation — sub-function = reportDTCByStatusMask —
request message flow example #3

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportDTCByStatusMask,
suppressPosRspMsgIndicationBit = FALSE

02 RDTCBSM

#3 DTCStatusMask 01 DTCSM

Table 274 — ReadDTCInformation — sub-function = reportDTCByStatusMask —
positive response — example #3

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportDTCByStatusMask 02 RDTCBSM

#3 DTCStatusAvailabilityMask 7F DTCSAM

ISO 14229:2006(E)

186 © ISO 2006 – All rights reserved

11.3.5.5 Example #4 — ReadDTCInformation — sub-function = reportDTCSnapshotIdentification

11.3.5.5.1 Example #4 overview

This example demonstrates the usage of the reportDTCSnapshotIdentification sub-function parameter.

11.3.5.5.2 Example #4 assumptions

The following assumptions apply.

a) The server supports the ability to store two (2) DTCSnapshot records for a given DTC.

b) The server shall indicate that two (2) DTCSnapshot records are currently stored for DTC number 123456
hex. For the purpose of this example, assume that this DTC had occurred three times (such that only the
first and most recent DTCSnapshot records are stored because of lack of storage space within the
server).

c) The server shall indicate that one (1) DTCSnapshot record is currently stored for DTC number 789ABC
hex.

d) All DTCSnapshot records are stored in ascending order.

e) The DTCSnapshotRecordNumber is unique to the server.

11.3.5.5.3 Example #4 message flow

In the following example, three (3) DTCSnapshot records are returned to the client’s request.

Table 275 — ReadDTCInformation — sub-function = reportDTCSnapshotIdentification —
request message flow example #4

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportDTCSnapshotIdentification,
suppressPosRspMsgIndicationBit = FALSE

03 RDTCSSI

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 187

Table 276 — ReadDTCInformation — sub-function = reportDTCSnapshotIdentification —
positive response — example #4

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportDTCSnapshotIdentification 03 RDTCSSI

#3 DTCAndStatusRecord#1 [DTCHighByte] 12 DTCHB

#4 DTCAndStatusRecord#1 [DTCMiddleByte] 34 DTCMB

#5 DTCAndStatusRecord#1 [DTCLowByte] 56 DTCLB

#6 DTCSnapshotRecordNumber #1 01 DTCEDRC

#7 DTCAndStatusRecord#2 [DTCHighByte] 12 DTCHB

#8 DTCAndStatusRecord#2 [DTCMiddleByte] 34 DTCMB

#9 DTCAndStatusRecord#2 [DTCLowByte] 56 DTCLB

#10 DTCSnapshotRecordNumber #2 02 DTCEDRC

#11 DTCAndStatusRecord#3 [DTCHighByte] 78 DTCHB

#12 DTCAndStatusRecord#3 [DTCMiddleByte] 9A DTCMB

#13 DTCAndStatusRecord #3 [DTCLowByte] BC DTCLB

#14 DTCSnapshotRecordNumber #3 03 DTCEDRC

11.3.5.6 Example #5 — ReadDTCInformation — sub-function = reportDTCSnapshotRecord-
ByDTCNumber

11.3.5.6.1 Example #5 overview

This example demonstrates the usage of the reportDTCSnapshotRecordByDTCNumber sub-function
parameter.

11.3.5.6.2 Example #5 assumptions

The following assumptions apply.

a) The server supports the ability to store two (2) DTCSnapshot records for a given DTC.

b) This example assumes a continuation of the previous example.

c) Assume that the server requests the second of the two (2) DTCSnapshot records stored by the server for
DTC number 123456 hex (see previous example, where a DTCSnapshotRecordCount of 2 is returned to
the client).

d) Assume that DTC 123456 hex has a statusOfDTC of 24 hex and that the following environment data is
captured each time a DTC occurs.

e) The DTCSnapshot record data is referenced via the dataIdentifier 4711 hex.

ISO 14229:2006(E)

188 © ISO 2006 – All rights reserved

Table 277 — DTCSnapshot record content

Data byte DTCSnapshotRecord contents Byte value (hex)

#1 DTCSnapshotRecord [data #1] = ECT (Engine Coolant Temp.) A6

#2 DTCSnapshotRecord [data #2] = TP (Throttle Position) 66

#3 DTCSnapshotRecord [data #3] = RPM (Engine Speed) 07

#4 DTCSnapshotRecord [data #4] = RPM (Engine Speed) 50

#5 DTCSnapshotRecord [data #5] = MAP (Manifold Absolute Pressure) 20

11.3.5.6.3 Example #5 message flow

In the following example, one DTCSnapshot record is returned in accordance with the client’s
reportDTCSnapshotRecordByDTCNumber request.

Table 278 — ReadDTCInformation — sub-function = reportDTCSnapshotRecordByDTCNumber —
request message flow example #5

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportDTCSnapshotRecordByDTCNumber,
suppressPosRspMsgIndicationBit = FALSE

04 RDTCSSRBD
N

#3 DTCMaskRecord [DTCHighByte] 12 DTCHB

#4 DTCMaskRecord [DTCMiddleByte] 34 DTCMB

#5 DTCMaskRecord [DTCLowByte] 56 DTCLB

#6 DTCSnapshotRecordNumber 02 DTCSSRN

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 189

Table 279 — ReadDTCInformation — sub-function = reportDTCSnapshotRecordByDTCNumber —
positive response — example #5

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportDTCSnapshotRecordByDTCNumber 04 RDTCSSRBDN

#3 DTCAndStatusRecord [DTCHighByte] 12 DTCHB

#4 DTCAndStatusRecord [DTCMiddleByte] 34 DTCMB

#5 DTCAndStatusRecord [DTCLowByte] 56 DTCLB

#6 DTCAndStatusRecord [statusOfDTC] 24 SODTC

#7 DTCSnapshotRecordNumber 02 DTCEDRN

#8 DTCSnapshotRecordNumberOfIdentifiers 01 DTCSSRNI

#9 dataIdentifier [byte #1] (MSB) 47 DIDB1

#10 dataIdentifier [byte #2] (LSB) 11 DIDB2

#11 DTCSnapshotRecord [data #1] = ECT A6 ED_1

#12 DTCSnapshotRecord [data #2] = TP 66 ED_2

#13 DTCSnapshotRecord [data #3] = RPM 07 ED_3

#14 DTCSnapshotRecord [data #4] = RPM 50 ED_4

#15 DTCSnapshotRecord [data #5] = MAP 20 ED_5

11.3.5.7 Example #6 — ReadDTCInformation — sub-function = reportDTCSnapshotRecord-
ByRecordNumber

11.3.5.7.1 Example #6 overview

This example demonstrates the usage of the reportDTCSnapshotRecordByRecordNumber sub-function
parameter.

11.3.5.7.2 Example #6 assumptions

The following assumptions apply.

a) The server supports the ability to store two (2) DTCSnapshot records for a given DTC.

b) This example assumes a continuation of the previous example.

c) Assume that the server requests the second of the two (2) DTCSnapshot records stored by the server for
DTC number 123456 hex (see previous example, where a DTCSnapshotRecordCount of two (2) is
returned to the client).

d) Assume that DTC 123456 hex has a statusOfDTC of 24 hex and that the following environment data is
captured each time a DTC occurs.

e) The DTCSnapshot record data is referenced via the dataIdentifier 4711 hex.

ISO 14229:2006(E)

190 © ISO 2006 – All rights reserved

Table 280 — DTCSnapshot record content

Data byte DTCSnapshotRecord contents Byte value (hex)

#1 DTCSnapshotRecord [data #1] = ECT (Engine Coolant Temp.) A6

#2 DTCSnapshotRecord [data #2] = TP (Throttle Position) 66

#3 DTCSnapshotRecord [data #3] = RPM (Engine Speed) 07

#4 DTCSnapshotRecord [data #4] = RPM (Engine Speed) 50

#5 DTCSnapshotRecord [data #5] = MAP (Manifold Absolute Pressure) 20

11.3.5.7.3 Example #6 message flow

In the following example, DTCSnapshot record number two (2) is requested and the server returns the DTC
and DTCSnapshot record content.

Table 281 — ReadDTCInformation — sub-function = reportDTCSnapshotRecordByRecordNumber —
request message flow example #6

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportDTCSnapshotRecordByRecordNumber,
suppressPosRspMsgIndicationBit = FALSE

05 RDTCSSRBRN

#3 DTCSnapshotRecordNumber 02 DTCSSRN

Table 282 — ReadDTCInformation — sub-function = reportDTCSnapshotRecordByRecordNumber —
positive response, example #6

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportDTCSnapshotRecordByRecordNumber 05 RDTCSSRBRN

#3 DTCSnapshotDataRecordNumber 02 DTCSSRN

#4 DTCAndStatusRecord [DTCHighByte] 12 DTCHB

#5 DTCAndStatusRecord [DTCMiddleByte] 34 DTCMB

#6 DTCAndStatusRecord [DTCLowByte] 56 DTCLB

#7 DTCAndStatusRecord [statusOfDTC] 24 SODTC

#8 DTCSnapshotRecordNumberOfIdentifiers 01 DTCSSRNI

#9 dataIdentifier [byte#1] (MSB) 47 DIDB1

#10 dataIdentifier [byte#2] (LSB) 11 DIDB2

#11 DTCSnapshotRecord [data #1] = ECT A6 ED_1

#12 DTCSnapshotRecord [data #2] = TP 66 ED_2

#13 DTCSnapshotRecord [data #3] = RPM 07 ED_3

#14 DTCSnapshotRecord [data #4] = RPM 50 ED_4

#15 DTCSnapshotRecord [data #5] = MAP 20 ED_5

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 191

11.3.5.8 Example #7 — ReadDTCInformation — sub-function = reportDTCExtendedDataRecord-
ByDTCNumber

11.3.5.8.1 Example #7 overview

This example demonstrates the usage of the reportDTCExtendedDataRecordByDTCNumber sub-function
parameter.

11.3.5.8.2 Example #7 assumptions

The following assumptions apply.

a) The server supports the ability to store two (2) DTCExtendedData records for a given DTC.

b) Assume that the server requests all available DTCExtendedData records stored by the server for DTC
number 123456 hex.

c) Assume that DTC 123456 hex has a statusOfDTC of 24 hex, and that the following extended data is
available for the DTC.

d) The DTCExtendedData is referenced via the DTCExtendedDataRecordNumbers 05 hex and 10 hex.

Table 283 — DTCExtendedDataRecordNumber 05 hex content

Data byte DTCExtendedDataRecord contents for DTCExtendedDataRecordNumber 05 hex Byte value (hex)

#1 Warm-up Cycle Counter – Number of warm up cycles since the DTC commanded the
MIL to switch off

17

Table 284 — DTCExtendedDataRecordNumber 10 hex content

Data byte DTCExtendedDataRecord contents for DTCExtendedDataRecordNumber 10 hex Byte value (hex)

#1 DTC Fault Detection Counter – Increments each time the DTC test detects a fault,
decrements each time the test reports no fault.

79

11.3.5.8.3 Example #7 message flow

In the following example, a DTCMaskRecord including the DTC number and a
DTCExtendedDataRecordNumber with the value of FF hex (report all DTCExtendedDataRecords) is
requested by the client. The server returns two (2) DTCExtendedDataRecords which have been recorded for
the DTC number submitted by the client.

ISO 14229:2006(E)

192 © ISO 2006 – All rights reserved

Table 285 — ReadDTCInformation — sub-function = reportDTCExtendedDataRecordByDTCNumber —
request message flow example #7

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportDTCExtendedDataRecordByDTCNumber,
suppressPosRspMsgIndicationBit = FALSE

06 RDTCEDRBDN

#3 DTCMaskRecord [DTCHighByte] 12 DTCHB

#4 DTCMaskRecord [DTCMiddleByte] 34 DTCMB

#5 DTCMaskRecord [DTCLowByte] 56 DTCLB

#6 DTCExtendedDataRecordNumber FF DTCEDRN

Table 286 — ReadDTCInformation — sub-function = reportDTCExtendedDataRecordByDTCNumber—
positive response — example #7

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportDTCExtendedDataRecordByDTCNumber 06 RDTCEDRBDN

#3 DTCAndStatusRecord [DTCHighByte] 12 DTCHB

#4 DTCAndStatusRecord [DTCMiddleByte] 34 DTCMB

#5 DTCAndStatusRecord [DTCLowByte] 56 DTCLB

#6 DTCAndStatusRecord [statusOfDTC] 24 SODTC

#7 DTCExtendedDataRecordNumber 05 DTCEDRN

#8 DTCExtendedDataRecord [byte #1] 17 ED_1

#9 DTCExtendedDataRecordNumber 10 DTCEDRN

#10 DTCExtendedDataRecord [byte #1] 79 ED_1

11.3.5.9 Example #8 — ReadDTCInformation — sub-function =
reportNumberOfDTCBySeverityMaskRecord

11.3.5.9.1 Example #8 overview

This example demonstrates the usage of the reportNumberOfDTCBySeverityMaskRecord sub-function
parameter.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 193

11.3.5.9.2 Example #8 assumptions

The server supports a total of three (3) DTCs which have the following states at the time of the client request.

1) The following assumptions apply to DTC P0A9B-17 Hybrid Battery Temperature Sensor — circuit voltage
above threshold (0A9B17 hex), statusOfDTC 24 hex (0010 0100 binary), DTCFunctionalUnit = 10 hex:

NOTE Only bits 7 to 5 of the severity byte are valid.

Table 287 — statusOfDTC = 24 hex of DTC P0A9B-17

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is no longer failed at the time of the request.

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 0 DTC is not confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

2) The following assumptions apply to DTC P2522-1F A/C Request “B” - circuit intermittent (25221F hex),
statusOfDTC of 00 hex (0000 0000 binary), DTCFunctionalUnit = 10 hex:

NOTE Only bits 7 to 5 of the severity byte are valid.

Table 288 — statusOfDTC = 00 hex of DTC P2522-1F

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is not failed at the time of the request.

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle.

pendingDTC 2 0 DTC was not failed on the current or previous operation
cycle.

confirmedDTC 3 0 DTC is not confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 0 DTC test never failed since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

ISO 14229:2006(E)

194 © ISO 2006 – All rights reserved

3) The following assumptions apply to DTC P0805-11 Clutch Position Sensor — circuit short to ground
(080511 hex), statusOfDTC of 2F hex (0010 1111 binary), DTCFunctionalUnit = 10 hex:

NOTE Only bits 7 to 5 of the severity byte are valid.

Table 289 — statusOfDTC = 2F hex of DTC P0805-11

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 1 DTC is failed at the time of the request.

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 1 DTC is confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

4) The server supports the testFailed and confirmedDTC status bits for masking purposes.

11.3.5.9.3 Example #8 message flow

In the following example, a count of two (2) is returned to the client because DTC P0805-11 (080511 hex)
matches the client defined severity mask record of C001 hex (DTCSeverityMask = 110x xxxx binary = C0 hex,
DTCStatusMask = 0000 0001 binary).

Table 290 — ReadDTCInformation — sub-function = reportNumberOfDTCBySeverityMaskRecord —
request message flow example #8

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportNumberOfDTCBySeverityMaskRecord,
suppressPosRspMsgIndicationBit = FALSE

07 RNODTCBSMR

#3 DTCSeverityMaskRecord(DTCSeverityMask) C0 DTCSVM

#4 DTCSeverityMaskRecord(DTCStatusMask) 01 DTCSM

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 195

Table 291 — ReadDTCInformation — sub-function = reportNumberOfDTCBySeverityMaskRecord —
positive response — example #8

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportNumberOfDTCBySeverityMaskRecord 07 RNODTCBSMR

#3 DTCStatusAvailabilityMask 09 DTCSAM

#4 DTCFormatIdentifier = ISO14229-1DTCFormat 01 14229-1DTCF

#5 DTCCount [DTCCountHighByte] 00 DTCCHB

#6 DTCCount [DTCCountLowByte] 01 DTCCLB

11.3.5.10 Example #9 — ReadDTCInformation — sub-function = reportDTCBySeverityMaskRecord

11.3.5.10.1 Example #9 overview

This example demonstrates the usage of the reportDTCBySeverityMaskRecord sub-function parameter.

11.3.5.10.2 Example #9 assumptions

The assumptions defined in �11.3.5.9.2� and those defined in this section apply.

In the following example, the DTC P0805-11 (080511 hex) matches the client-defined severity mask record of
C001 hex (DTCSeverityMask = C0 hex = 110x xxxx binary, DTCStatusMask = 01 hex 0000 0001 binary) and
is reported to the client. The severity of DTC P0805-11 (080511 hex) is 40 hex (010x xxxx binary). The server
supports all status bits for masking purposes, except for bit 7 “warningIndicatorRequested”.

NOTE Only bits 7 to 5 of the severity mask byte are valid.

11.3.5.10.3 Example #9 message flow

In the following example, one (1) DTCSeverityRecord is returned to the client’s request.

Table 292 — ReadDTCInformation — sub-function = reportDTCBySeverityMaskRecord —
request message flow example #9

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportDTCBySeverityMaskRecord,
suppressPosRspMsgIndicationBit = FALSE

08 RDTCBSMR

#3 DTCSeverityMaskRecord(DTCSeverityMask) C0 DTCSVM

#4 DTCSeverityMaskRecord(DTCStatusMask) 01 DTCSM

ISO 14229:2006(E)

196 © ISO 2006 – All rights reserved

Table 293 — ReadDTCInformation — sub-function = reportDTCBySeverityMaskRecord —
positive response — example #9

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportDTCBySeverityMaskRecord 08 RDTCBSMR

#3 DTCStatusAvailabilityMask 7F DTCSAM

#4 DTCSeverityRecord#1 [DTCSeverity] 40 DTCS

#5 DTCSeverityRecord#1 [DTCFunctionalUnit] 10 DTCFU

#6 DTCSeverityRecord#1 [DTCHighByte] 08 DTCHB

#7 DTCSeverityRecord#1 [DTCMiddleByte] 05 DTCMB

#8 DTCSeverityRecord#1 [DTCLowByte] 11 DTCLB

#9 DTCSeverityRecord#1 [statusOfDTC] 2F SODTC

11.3.5.11 Example #10 — ReadDTCInformation — sub-function = reportSeverityInformationOfDTC

11.3.5.11.1 Example #10 overview

This example demonstrates the usage of the reportSeverityInformationOfDTC sub-function parameter.

11.3.5.11.2 Example #10 assumptions

The assumptions defined in �11.3.5.10.2� apply.

11.3.5.11.3 Example #10 message flow

In the following example, the DTC P0805-11 (080511 hex), which matches the client-defined DTC mask
record, is reported to the client.

Table 294 — ReadDTCInformation — sub-function = reportSeverityInformationOfDTC —
request message flow example #10

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportSeverityInformationOfDTC,
suppressPosRspMsgIndicationBit = FALSE

09 RSIODTC

#3 DTCMaskRecord [DTCHighByte] 08 DTCHB

#4 DTCMaskRecord [DTCMiddleByte] 05 DTCMB

#5 DTCMaskRecord [DTCLowByte] 11 DTCLB

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 197

Table 295 — ReadDTCInformation — sub-function = reportSeverityInformationOfDTC —
positive response — example #10

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportDTCBySeverityMaskRecord 09 RSIODTC

#3 DTCStatusAvailabilityMask 7F DTCSAM

#4 DTCSeverityRecord [DTCSeverity] 40 DTCS

#5 DTCSeverityRecord [DTCFunctionalUnit] 10 DTCFU

#6 DTCSeverityRecord [DTCHighByte] 08 DTCHB

#7 DTCSeverityRecord [DTCMiddleByte] 05 DTCMB

#8 DTCSeverityRecord [DTCLowByte] 11 DTCLB

#9 DTCSeverityRecord [statusOfDTC] 2F SODTC

11.3.5.12 Example #11 — ReadDTCInformation — sub-function = reportSupportedDTCs

11.3.5.12.1 Example #11 overview

This example demonstrates the usage of the reportSupportedDTCs sub-function parameter.

11.3.5.12.2 Example #11 assumptions

The assumptions defined in section �11.3.5.10.2� apply. In addition, the following assumptions apply.

The server supports a total of three (3) DTCs (for the sake of simplicity), which have the following states at the
time of the client request.

a) The following assumptions apply to DTC 123456 hex, statusOfDTC 24 hex (00100100 binary):

Table 296 — statusOfDTC = 24 hex

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is not failed at the time of the request.

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 0 DTC was never confirmed.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 1 DTC failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

ISO 14229:2006(E)

198 © ISO 2006 – All rights reserved

b) The following assumptions apply to DTC 234505 hex, statusOfDTC of 00 hex (0000 0000 binary):

Table 297 — statusOfDTC = 00 hex

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is not failed at the time of the request.

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle.

pendingDTC 2 0 DTC was not failed on the current or previous operation
cycle.

confirmedDTC 3 0 DTC is not confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 0 DTC test never failed since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

c) The following assumptions apply to DTC ABCD01 hex, statusOfDTC of 2F hex (0010 1111 binary):

Table 298 — statusOfDTC = 2F hex

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 1 DTC is failed at the time of the request.

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 1 DTC is confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

11.3.5.12.3 Example #11 message flow

In the following example, all three (3) of the above DTCs are returned to the client’s request because all are
supported.

Table 299 — ReadDTCInformation — sub-function = reportSupportedDTCs —
request message flow example #11

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportSupportedDTCs,
suppressPosRspMsgIndicationBit = FALSE

0A RSUPDTC

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 199

Table 300 — ReadDTCInformation — sub-function = readSupportedDTCs —
positive response, example #11

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = readSupportedDTCs 0A RSUPDTC

#3 DTCStatusAvailabilityMask 7F DTCSAM

#4 DTCAndStatusRecord#1 [DTCHighByte] 12 DTCHB

#5 DTCAndStatusRecord#1 [DTCMiddleByte] 34 DTCMB

#6 DTCAndStatusRecord#1 [DTCLowByte] 56 DTCLB

#7 DTCAndStatusRecord#1 [statusOfDTC] 24 SODTC

#8 DTCAndStatusRecord#2 [DTCHighByte] 23 DTCHB

#9 DTCAndStatusRecord#2 [DTCMiddleByte] 45 DTCMB

#10 DTCAndStatusRecord#2 [DTCLowByte] 05 DTCLB

#11 DTCAndStatusRecord#2 [statusOfDTC] 00 SODTC

#12 DTCAndStatusRecord#3 [DTCHighByte] AB DTCHB

#13 DTCAndStatusRecord#3 [DTCMiddleByte] CD DTCMB

#14 DTCAndStatusRecord#3 [DTCLowByte] 01 DTCLB

#15 DTCAndStatusRecord#3 [statusOfDTC] 2F SODTC

11.3.5.13 Example #12 — ReadDTCInformation — sub-function = reportFirstTestFailedDTC —
information available

11.3.5.13.1 Example #12 overview

This example demonstrates usage of the reportFirstTestFailedDTC sub-function parameter, where it is
assumed that at least one (1) failed DTC has occurred since the last ClearDiagnosticInformation request from
the server.

If exactly one (1) DTC has failed within the server since the last ClearDiagnosticInformation request from the
server, then the server will return the same information in response to a reportMostRecentTestFailedDTC
request from the client.

In this example, the status of the DTC returned in response to the reportFirstTestFailedDTC is no longer
current at the time of the request (the same phenomenon is possible when requesting the server to report the
most recent failed/confirmed DTC).

The general format of request/response messages in the following example is also applicable to sub-function
parameters reportFirstConfirmedDTC, reportMostRecentTestFailedDTC and reportMostRecent-
ConfirmedDTC (for the appropriate DTC status and under similar assumptions).

ISO 14229:2006(E)

200 © ISO 2006 – All rights reserved

11.3.5.13.2 Example #12 assumptions

The following assumptions apply.

a) At least one (1) DTC has failed since the last ClearDiagnosticInformation request from the server.

b) The server supports all status bits for masking purposes.

c) DTC number 123456 hex = first failed DTC to be detected since the last code clear.

d) The following assumptions apply to DTC 123456 hex, statusOfDTC 26 hex (0010 0110 binary):

Table 301 — statusOfDTC = 26 hex

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is not failed at the time of the request.

testFailedThisOperationCycle 1 1 DTC never failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 0 DTC was never confirmed.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 1 DTC failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

11.3.5.13.3 Example #12 message flow

In the following example, DTC 123456 hex is returned to the client’s request.

Table 302 — ReadDTCInformation — sub-function = reportFirstTestFailedDTC —
request message flow example #12

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportFirstTestFailedDTC,
suppressPosRspMsgIndicationBit = FALSE

0B RFTFDTC

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 201

Table 303 — ReadDTCInformation — sub-function = reportFirstTestFailedDTC —
positive response — example #12

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportFirstTestFailedDTC 0B RFTFDTC

#3 DTCStatusAvailabilityMask FF DTCSAM

#4 DTCAndStatusRecord [DTCHighByte] 12 DTCHB

#5 DTCAndStatusRecord [DTCMiddleByte] 34 DTCMB

#6 DTCAndStatusRecord [DTCLowByte] 56 DTCLB

#7 DTCAndStatusRecord [statusOfDTC] 26 SODTC

11.3.5.14 Example #13 — ReadDTCInformation — sub-function = reportFirstTestFailedDTC — no
information available

11.3.5.14.1 Example #13 overview

This example demonstrates usage of the reportFirstTestFailedDTC sub-function parameter, where it is
assumed that no failed DTCs have occurred since the last ClearDiagnosticInformation request from the server.

The general format of request/response messages in the following example is also applicable to sub-function
parameters reportFirstConfirmedDTC, reportMostRecentTestFailedDTC and reportMostRecentConfirmedDTC
(for the appropriate DTC status and under similar assumptions).

11.3.5.14.2 Example #13 assumptions

The following assumptions apply.

a) No failed DTCs have occurred since the last ClearDiagnosticInformation request from the server.

b) The server supports all status bits for masking purposes.

11.3.5.14.3 Example #13 message flow

In the following example no DTC is returned to the client’s request.

Table 304 — ReadDTCInformation — sub-function = reportFirstTestFailedDTC —
request message flow example #13

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportFirstTestFailedDTC,
suppressPosRspMsgIndicationBit = FALSE

0B RFTFDTC

ISO 14229:2006(E)

202 © ISO 2006 – All rights reserved

Table 305 — ReadDTCInformation — sub-function = reportFirstTestFailedDTC —
positive response, example #13

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportFirstTestFailedDTC 0B RFTFDTC

#3 DTCStatusAvailabilityMask FF DTCSAM

11.3.5.15 Example #14 — ReadDTCInformation, sub-function = reportNumberOfEmissionsRelatedOBD-
DTCByStatusMask

11.3.5.15.1 Example #14 overview

This example demonstrates the usage of the reportNumberOfEmissionsRelatedOBDDTCByStatusMask
sub-function parameter, as well as various masking principles.

11.3.5.15.2 Example #14 assumptions

The server supports all status bits for masking purposes. Furthermore the server supports a total of three (3)
emissions-related OBD DTCs (for the sake of simplicity), which have the following states at the time of the
client request.

a) The following assumptions apply to emissions-related OBD DTC P0005-00 — Fuel Shutoff Valve “A”
Control Circuit/Open (000500 hex), statusOfDTC AE hex (1010 1110 binary):

Table 306 — statusOfDTC = AE hex of DTC P0005-00

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is not failed at the time of the request.

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 1 DTC is confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 1 DTC failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 1 Server is requesting warningIndicator to be active (OBD
DTC).

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 203

b) The following assumptions apply to emissions-related OBD DTC P022F-00 Intercooler Bypass Control “B”
Circuit High (022F00 hex), statusOfDTC of AC hex (1010 1100 binary):

Table 307 — statusOfDTC = AC hex of DTC P022F-00

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 DTC is not failed at the time of the request.

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 1 DTC is confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 1 DTC failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 1 Server is requesting warningIndicator to be active (OBD
DTC).

c) The following assumptions apply to emissions-related OBD DTC P0A09-00 DC/DC Converter Status
Circuit Low Input (0A0900 hex), statusOfDTC of AF hex (1010 1111 binary):

Table 308 — statusOfDTC = AF of DTC P0A09-00

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 1 DTC failed at the time of the request.

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 1 DTC is confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 DTC test has been completed since the last code clear.

testFailedSinceLastClear 5 1 DTC test failed at least once since last code clear.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 1 Server is requesting warningIndicator to be active (OBD
DTC).

ISO 14229:2006(E)

204 © ISO 2006 – All rights reserved

11.3.5.15.3 Example #14 message flow

In the following example, a count of three (3) is returned to the client because all DTCs defined in the
assumptions match the client-defined status mask of 08 hex – confirmedDTC (0000 1000 binary):

Table 309 — ReadDTCInformation — sub-function = reportNumberOfEmissionsRelatedOBD-
DTCByStatusMask — request message flow example #14

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function =
reportNumberOfEmissionsRelatedOBDDTCByStatusMask,
suppressPosRspMsgIndicationBit = FALSE

12 RNOOBDDTCBSM

#3 DTCStatusMask 08 DTCSM

Table 310 — ReadDTCInformation — sub-function = reportNumberOfEmissionsRelatedOBD-
DTCByStatusMask — positive response — example #14

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType =
reportNumberOfEmissionsRelatedOBDDTCByStatusMask

12 RNOOBDDTCBSM

#3 DTCStatusAvailabilityMask FF DTCSAM

#4 DTCFormatIdentifier = ISO15031-6DTCFormat 00 15031-6DTCF

#5 DTCCount [DTCCountHighByte] 00 DTCCHB

#6 DTCCount [DTCCountLowByte] 03 DTCCLB

11.3.5.16 Example #15 — ReadDTCInformation — sub-function = reportEmissionsRelatedOBDDTC-
ByStatusMask — all matching OBD DTCs returned

11.3.5.16.1 Example #15 overview

This example demonstrates usage of the reportEmissionsRelatedOBDDTCByStatusMask sub-function
parameter, as well as various masking principles in conjunction with unsupported masking bits.

11.3.5.16.2 Example #15 assumptions

The server supports all status bits for masking purposes. The server supports a total of three (3) DTCs (for the
sake of simplicity) as defined in �11.3.5.15.2�.

11.3.5.16.3 Example #15 message flow

In the following example, emissions-related OBD DTC P0005-AE Fuel Shutoff Valve “A” Control Circuit/Open
(000500 hex), P022F-00 Intercooler Bypass Control “B” Circuit High (022F00 hex) and P0A09-00 DC/DC
Converter Status Circuit Low Input (0A0900 hex) are returned to the client’s request because all DTCs defined

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 205

in the assumptions match the client-defined status mask of 80 hex – warningIndicatorRequested (1000 0000
binary).

NOTE The server shall bypass masking on those status bits it does not support.

Table 311 — ReadDTCInformation — sub-function = reportEmissionsRelatedOBDDTCByStatusMask —
request message flow example #15

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportEmissionsRelatedOBDDTCByStatusMask,
suppressPosRspMsgIndicationBit = FALSE

13 ROBDDTCBSM

#3 DTCStatusMask 80 DTCSM

Table 312 — ReadDTCInformation— sub-function = reportEmissionsRelatedOBDDTCByStatusMask —
positive response — example #15

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportEmissionsRelatedOBDDTCByStatusMask 13 ROBDDTCBSM

#3 DTCStatusAvailabilityMask FF DTCSAM

#4 DTCAndStatusRecord#1 [DTCHighByte] 00 DTCHB

#5 DTCAndStatusRecord#1 [DTCMiddleByte] 05 DTCMB

#6 DTCAndStatusRecord#1 [DTCLowByte] 00 DTCLB

#7 DTCAndStatusRecord#1 [statusOfDTC] AE SODTC

#8 DTCAndStatusRecord#2 [DTCHighByte] 02 DTCHB

#9 DTCAndStatusRecord#2 [DTCMiddleByte] 2F DTCMB

#10 DTCAndStatusRecord#2 [DTCLowByte] 00 DTCLB

#11 DTCAndStatusRecord#2 [statusOfDTC] AC SODTC

#12 DTCAndStatusRecord#3 [DTCHighByte] 0A DTCHB

#13 DTCAndStatusRecord#3 [DTCMiddleByte] 09 DTCMB

#14 DTCAndStatusRecord#3 [DTCLowByte] 00 DTCLB

#15 DTCAndStatusRecord#3 [statusOfDTC] AF SODTC

ISO 14229:2006(E)

206 © ISO 2006 – All rights reserved

11.3.5.17 Example #16 — ReadDTCInformation — sub-function = reportEmissionsRelatedOBDDTC-
ByStatusMask (confirmedDTC and warningIndicatorRequested) — matching DTCs returned

11.3.5.17.1 Example #16 overview

This example demonstrates usage of the reportEmissionsRelatedOBDDTCByStatusMask sub-function
parameter, as well as the masking principle of requesting the server to report emissions-related OBD DTCs
which are of the status “confirmedDTC” and “warningIndicatorRequested (MIL = ON)” in conjunction with
unsupported masking bits. This example shows a typical OBD Scan Tool type request for emissions-related
OBD DTCs which cause the MIL to be turned ON and therefore do not pass the I/M (Inspection and
Maintenance) test.

11.3.5.17.2 Example #16 assumptions

The server does not support bit 0 (testFailed), bit 4 (testNotCompletedSinceLastClear) or bit 5
(testFailedSinceLastClear) for masking purposes. This results in a DTCStatusAvailabilityMask value of CE
hex (1100 1110 binary).

The client uses a DTC status mask with the value of 88 hex (1000 1000 binary) because only DTCs with the
status “confirmedDTC = 1” and “warningIndicatorRequested = 1” shall be displayed to the technician. The
server supports a total of three (3) DTCs (for the sake of simplicity), which have the following states at the
time of the client request.

a) The following assumptions apply to DTC P010A-14 Mass or Volume Air Flow “A” — circuit short to
ground or open (010A14 hex), statusOfDTC 00 hex (0000 0000 binary):

Table 313 — statusOfDTC = 00 hex of DTC P010A-14

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 Not applicable.

testFailedThisOperationCycle 1 0 DTC never failed on the current operation cycle.

pendingDTC 2 0 DTC was not failed on the current or previous
operation cycle.

confirmedDTC 3 0 DTC is not confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 Not applicable.

testFailedSinceLastClear 5 0 Not applicable.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 0 Server is not requesting warningIndicator to be active.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 207

b) The following assumptions apply to DTC P0180-17 Fuel Temperature Sensor A — circuit voltage above
threshold (018017 hex), statusOfDTC of 8E hex (1000 1110 binary):

Table 314 — statusOfDTC = 8E hex of DTC P0180-17

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 Not applicable.

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 1 DTC is confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 Not applicable.

testFailedSinceLastClear 5 0 Not applicable.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 1 Server is requesting warningIndicator to be active
(OBD DTC).

c) The following assumptions apply to DTC P0190-1D Fuel Rail Pressure Sensor “A” — circuit current out of
range (01901D hex), statusOfDTC of 8E hex (1000 1110 binary):

Table 315 — statusOfDTC = 8E hex of DTC P0190-1D

statusOfDTC: bit field name Bit

Bit
state Description

testFailed 0 0 Not applicable.

testFailedThisOperationCycle 1 1 DTC failed on the current operation cycle.

pendingDTC 2 1 DTC failed on the current or previous operation cycle.

confirmedDTC 3 1 DTC is confirmed at the time of the request.

testNotCompletedSinceLastClear 4 0 Not applicable.

testFailedSinceLastClear 5 0 Not applicable.

testNotCompletedThisOperationCycle 6 0 DTC test completed this operation cycle.

warningIndicatorRequested 7 1 Server is requesting warningIndicator to be active
(OBD DTC).

ISO 14229:2006(E)

208 © ISO 2006 – All rights reserved

11.3.5.17.3 Example #16 message flow

In the following example, P0180-17 (018017 hex) and P0190-1D (01901D hex) are returned to the client’s
request.

The server shall bypass masking on those status bits it doesn’t support.

Table 316 — ReadDTCInformation — sub-function = reportEmissionsRelatedOBDDTCByStatusMask —
request message flow example #16

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation request SID 19 RDTCI

#2 sub-function = reportEmissionsRelatedOBDDTCByStatusMask,
suppressPosRspMsgIndicationBit = FALSE

13 ROBDDTCBSM

#3 DTCStatusMask 88 DTCSM

Table 317 — ReadDTCInformation — sub-function = reportEmissionsRelatedOBDDTCByStatusMask —
positive response — example #16

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDTCInformation response SID 59 RDTCIPR

#2 reportType = reportEmissionsRelatedOBDDTCByStatusMask 13 ROBDDTCBSM

#3 DTCStatusAvailabilityMask CE DTCSAM

#8 DTCAndStatusRecord#1 [DTCHighByte] 01 DTCHB

#9 DTCAndStatusRecord#1 [DTCMiddleByte] 80 DTCMB

#10 DTCAndStatusRecord#1 [DTCLowByte] 17 DTCLB

#11 DTCAndStatusRecord#1 [statusOfDTC] 8E SODTC

#12 DTCAndStatusRecord#2 [DTCHighByte] 01 DTCHB

#13 DTCAndStatusRecord#2 [DTCMiddleByte] 90 DTCMB

#14 DTCAndStatusRecord#2 [DTCLowByte] 1D DTCLB

#15 DTCAndStatusRecord#2 [statusOfDTC] 8E SODTC

12 InputOutput control functional unit

12.1 Overview

Table 318 — InputOutput control functional unit

Service Description

InputOutputControlByIdentifier The client requests the control of an input/output specific to the server.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 209

12.2 InputOutputControlByIdentifier (2F hex) service

12.2.1 Service description

The InputOutputControlByIdentifier service is used by the client to substitute a value for an input signal,
internal server function and/or control an output (actuator) of an electronic system.

The client request message contains a dataIdentifier to reference the input signal, internal server function
and/or output signal(s) [actuator(s)] (in case of a device control access it might reference a group of signals) of
the server. The controlOptionRecord parameter shall include all information required by the server’s input
signal(s), internal function(s) and/or output signal(s). Optionally, the request message can contain a
controlEnableMask, which might be present if the controlState#1 is used as an inputOutputControlParameter
and the dataIdentifier to be controlled references more than one parameter (i.e. the dataIdentifier is packeted
or bitmapped).

The server shall send a positive response message if the request message was successfully executed. The
server shall send a positive response message to a request message with an inputOutputControlIParameter
of returnControlToECU even if the dataIdentifier is currently not under tester control. The controlOptionRecord
parameter of the request message can be implemented as a single ON/OFF parameter or as a more complex
sequence of control parameters including a number of cycles, a duration, etc. if required.

The service allows the control of a single dataIdentifier with the corresponding controlOptionRecord in a single
request message. In doing so, the server will respond with a single response message including the
dataIdentifier of the request message plus optional controlStatus information.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in �7.5.3� in the event that those addressing methods are implemented for this service.

12.2.2 Request message

12.2.2.1 Request message definition

Table 319 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 InputOutputControlByIdentifier Request Service Id M 2F IOCBI

#2
#3

dataIdentifier#1[] = [
byte#1 (MSB)
byte#2 (LSB)]

M
M

00-FF
00-FF

IOI_
B1
B2

#4
:

#4+(m-1)

controlOptionRecord#1[] = [
controlState#1/inputOutputControlParameter
 :
controlState#m]

MB1B

a
:

CB1B
b

00-FF

:
00-FF

COR_
IOCP_/CS_

:
CS_

#4+m

:
#4+m+(r-1)

controlEnableMaskRecord#1[] = [
controlMask#1
 :
controlMask#r]

CB2B

c
:

CB2B

00-FF

:
00-FF

CEM_
CM_

:
CM_

a MB1B: Mandatory: ControlState#1 can be used as either an InputOutputControlParameter or an additional controlState. If it is used as
an InputOutputControlParameter, then it shall be implemented as defined in E.1.
b The presence of the C1 parameter depends on the dataIdentifier#1 and the inputOutputControlParameter of
controlOptionRecord#1 (if controlState#1 of controlOptionRecord#1 is used as an inputOutputControlParameter).
c The presence of the C2 parameter depends on the dataIdentifier#1.

ISO 14229:2006(E)

210 © ISO 2006 – All rights reserved

12.2.2.2 Request message sub-function parameter $Level (LEV_) definition

This service does not use a sub-function parameter.

12.2.2.3 Request message data parameter definition

The following data parameters are defined for this service:

Table 320 — Request message data parameter definition

Definition

dataIdentifier

This parameter identifies server local input signal(s), internal parameter(s) or output signal(s). The applicable range of
values for this parameter can be found in the table of dataIdentifiers defined in �C.1.

controlOptionRecord

The controlOptionRecord of each dataIdentifier consists of one or multiple bytes
(controlState#1/inputOutputControlParameter to controlState#m). ControlState#1 can be used as either an
InputOutputControlParameter that describes how the server shall control its inputs or outputs, or as an additional
controlState byte. If it is used as an InputOutputControlParameter, then it shall be implemented as defined in �E.1�.

controlEnableMaskRecord

The ControlEnableMask of each dataIdentifier consists of one or multiple bytes (controlMask#1 to controlMask#r). The
ControlEnableMask shall only be supported when the inputOutputControlParameter is used and the dataIdentifier to be
controlled consists of more than one parameter (i.e. the dataIdentifier is bit-mapped or packeted by definition). There
shall be one bit in the ControlEnableMask corresponding to each individual parameter defined within the dataIdentifier.

NOTE The parameter could be any number of bits.

The value of each bit shall determine whether the corresponding parameter in the dataIdentifier will be affected by the
request. A bit value of '0' in the ControlEnableMask shall represent that the corresponding parameter is not affected by
this request and a bit value of '1' shall represent that the corresponding parameter is affected by this request. The most
significant bit of ControlMask#1 shall correspond to the first parameter in the ControlState starting at the most significant
bit of ControlState#1, the second most significant bit of ControlMask#1 shall correspond to the second parameter in the
ControlState, and continuing on in this fashion utilizing as many ControlMask bytes as necessary to mask all parameters.
For example, the least significant bit of ControlMask#2 would correspond to the 16th parameter in the controlState. For
bit-mapped dataIdentifiers, unsupported bits shall also have a corresponding bit in the ControlEnableMask so that the
position of the mask bit of every parameter in the ControlEnableMask shall exactly match the position of the
corresponding parameter in the controlState.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 211

12.2.3 Positive response message

12.2.3.1 Positive response message definition

Table 321 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 InputOutputControlByIdentifier Response Service Id S 6F IOCBIPR

#2
#3

dataIdentifier#1[] = [
byte#1 (MSB)
byte#2 (LSB)]

M
M

00-FF
00-FF

IOI_
B1
B2

#4
:

#4+(m-1)

controlStatusRecord#1[] = [
controlState#1/inputOutputControlParameter
:
controlState#m]

CB1B

a
:

CB2B
b

00-FF

:
00-FF

CSR_
IOCP_/CS_

:
CS_

a The presence of the C1 parameter depends on its usage in the request message. ControlState#1 is either used as an
InputOutputControlParameter or as an additional controlState. If it is used as an InputOutputControlParameter then it shall be present in
the response message and shall be the echo of the InputOutputControlParameter value given in the request message. In all other cases
its presence is user-optional (depends on the usage of a controlStatusRecord).
b The presence of the C2 parameter depends on the dataIdentifier and the inputOutputControlParameter (if controlState#1 is used as
an inputOutputControlParameter).

12.2.3.2 Positive response message data parameter definition

Table 322 — Response message data parameter definition

Definition

dataIdentifier

This parameter is an echo of the dataIdentifier(s) from the request message.

controlStatusRecord

The controlState parameter of each dataIdentifier consists of one or multiple bytes
(controlState#1/InputOutputControlParameter to controlState #m) which include e.g. feedback data. If controlState#1
was used as an InputOutputControlParameter in the request message, then the controlState#1 in the response is the
echo of the InputOutputControlParameter value given in the request message (see �E.1� for details on the
InputOutputControlParameter).

ISO 14229:2006(E)

212 © ISO 2006 – All rights reserved

12.2.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in �Table 323�.

Table 323 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect M CNC

 This code shall be returned if the criteria for the request InputOutputControl are not met.

31 requestOutOfRange M ROOR

 This code shall be returned if:

1) the requested dataIdentifier value is not supported by the device;

2) the dataIdentifier uses the controlState#1 parameter as an
inputOutputControlParameter and the value contained in this parameter is invalid
(see definition of inputOutputControlParameter);

3) one or more of the applicable controlStates of the controlOptionRecord record are
invalid.

33 securityAccessDenied M SAD

 This code shall be returned if a client sends a request with a valid secure dataIdentifier
and the server’s security feature is currently active.

12.2.5 Message flow example(s) InputOutputControlByIdentifier

12.2.5.1 Assumptions

The examples below show how the InputOutputControlByIdentifier is used with a Powertrain Control Module
(PCM/ECM). All of the examples assume that physical communication is performed with a single server.

12.2.5.2 Example #1 — “Desired Idle Adjustment” resetToDefault

This example uses the controlState#1 parameter of the controlOptionRecord of the request message as an
inputOutputControlParameter; therefore, the value is echoed back in the response message.

This subclause specifies the test conditions of the resetToDefault function and the associated message flow of
the “Desired Idle Adjustment” dataIdentifier (0132 hex).

Test conditions: ignition = ON, engine at idle speed, engine at operating temperature, vehicle speed = 0 [kph].

Conversion: Desired Idle Adjustment [r/min] = decimal(Hex) * 10 [r/min].

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 213

Table 324 — InputOutputControlByIdentifier request message flow example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier request SID 2F IOCBI

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 32 (“Desired Idle Adjustment”) 32 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] = resetToDefault 01 IOCP_RTD

Table 325 — InputOutputControlByIdentifier positive response message flow example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier response SID 6F IOCBIPR

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 32 (“Desired Idle Adjustment”) 32 IOI_B2

#4 controlStatusRecord [inputOutputControlParameter] =
resetToDefault

01 IOCP_RTD

#5 controlStatusRecord [controlState#1] = 750 r/min 4B CS_1

12.2.5.3 Example #2 — “Desired Idle Adjustment” shortTermAdjustment

This example uses the controlState#1 parameter of the controlOptionRecord of the request message as an
inputOutputControlParameter; therefore, the value is echoed back in the response message.

This subclause specifies the test conditions of a shortTermAdjustment function and the associated message
flow of the “Desired Idle Adjustment” dataIdentifier.

Test conditions: ignition = ON, engine at idle speed, engine at operating temperature, vehicle speed = 0 [kph].

Conversion: Desired Idle Adjustment [r/min] = decimal(Hex) * 10 [r/min].

12.2.5.3.1 Step #1 — freezeCurrentState

Table 326 — InputOutputControlByIdentifier request message flow example #2 — step #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier request SID 2F IOCBI

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 32 (“Desired Idle Adjustment”) 32 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
freezeCurrentState

02 IOCP_FCS

ISO 14229:2006(E)

214 © ISO 2006 – All rights reserved

Table 327 — InputOutputControlByIdentifier positive response message flow example #2 — step #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier response SID 6F IOCBIPR

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 32 (“Desired Idle Adjustment”) 32 IOI_B2

#4 controlStatusRecord [inputOutputControlParameter] =
freezeCurrentState

02 IOCP_FCS

#5 controlStatusRecord [controlState#1] = 800 r/min 50 CS_1

12.2.5.3.2 Step #2 — shortTermAdjustment

Table 328 — InputOutputControlByIdentifier request message flow example #2 — step #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier request SID 2F IOCBI

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 32 (“Desired Idle Adjustment”) 32 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
shortTermAdjustment

03 IOCP_STA

#5 controlOptionRecord [controlState#1] = 1000 r/min 64 CS_1

Table 329 — InputOutputControlByIdentifier positive response message flow example #2 — step #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier response SID 6F IOCBIPR

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 32 (“Desired Idle Adjustment”) 32 IOI_B2

#4 controlStatusRecord [inputOutputControlParameter] =
shortTermAdjustment

03 IOCP_STA

#5 controlStatusRecord [controlState#1] = 820 r/min 52 CS_1

NOTE The client has sent an inputOutputControlByIdentifier request message as specified above. The server has
sent an immediate positive response message, which includes the controlState parameter “Engine Speed” with the value
of “820 r/min”. The engine requires a certain amount of time to adjust the idle speed to the requested value of “1000 r/min”.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 215

12.2.5.3.3 Step #3 — ReadDataByIdentifier

For the example, it is assumed that the dataIdentifier 0101 hex contains the engine speed parameter.

Table 330 — ReadDataByIdentifier request message flow example #2 — step #3

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier request SID 22 RDBI

#2 recordIdentifier [byte#1] = 01 01 RI_B1

#3 recordIdentifier [byte#2] = 01 01 RI_B2

Table 331 — ReadDataByIdentifier positive response message flow example #2 — step #3

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 ReadDataByIdentifier response SID 62 RDBIPR

#2 recordIdentifier [byte#1] = 01 01 RI_B1

#3 recordIdentifier [byte#2] = 01 01 RI_B2

#4 recordValue#1 xx RV_

: : : :

#n recordValue#m xx RV_

12.2.5.3.4 Step #4 — returnControlToECU

Table 332 — InputOutputControlByIdentifier request message flow example #2 — step #4

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier request SID 2F IOCBI

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 32 (“Desired Idle Adjustment”) 32 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
returnControlToECU

00 RCTECU

ISO 14229:2006(E)

216 © ISO 2006 – All rights reserved

Table 333 — InputOutputControlByIdentifier positive response message flow example #2 — step #4

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier response SID 6F IOCBIPR

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 32 (“Desired Idle Adjustment”) 32 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
returnControlToECU

00 RCTECU

#5 controlStatusRecord [controlState#1] = 980 r/min 62 CS_1

12.2.5.4 Example #3 — EGR and IAC shortTermAdjustment

12.2.5.4.1 Assumptions

This example uses a packeted dataIdentifier $0155 to demonstrate control of individual parameters or multiple
parameters within a single request. The most significant byte of the controlOptionRecord in the request
message is used as an inputOutputControlParameter, and therefore the value is echoed back in the response
message.

This subclause specifies the test conditions for a shortTermAdjustment function and the associated message
flow of the example dataIdentifier $0155. The dataIdentifier supports five (5) individual parameters as
described in �Table 334�.

Table 334 — Composite data blocks — DataIdentifier definitions — Example #3

Parameter Data
identifier

(hex)

Data byte

Number Size

Data record contents

0155 #1 (all bits) #1 8 bits dataRecord [data#1] = IAC Pintle Position (n = counts)

 #2 - #3
(all bits) #2 16 bits dataRecord [data#2-#3] = RPM (0 = 0 U/min, 65535 = 65535 U/min)

 #4 (bits 7-4) #3 4 bits dataRecord [data#4 (bits 7-4)] = Pedal Position A: Linear Scaling, 0 = 0%,
15 = 120%

 #4 (bits 3-0) #4 4 bits dataRecord [data#4 (bits 3-0)] = Pedal Position B: Linear Scaling, 0 = 0%,
15 = 120%

 #5 (all bits) #5 8 bits dataRecord [data#5] = EGR Duty Cycle: Linear Scaling, 0 counts = 0%,
255 counts = 100%

DataIdentifier $0155 is packeted by definition and is comprised of five (5) elemental parameters. For individual
control purposes, each of these elemental parameters is selectable via a single bit within the
ControlEnableMaskRecord. If a given dataIdentifier has a definition other than packeted or bit-mapped, the
ControlEnableMaskRecord is not present in the request. The most significant bit of ControlMask#1 is always
required to correspond to the first parameter in the dataIdentifier starting at the most significant bit of
ControlState#1. This is demonstrated in �Table 335.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 217

Table 335 — ControlEnableMaskRecord — Example #3

ControlEnableMaskRecord for dataIdenitifier $0155. Total size = 1 byte (i.e. consists only of ControlEnableMask#1)

Bit position ControlEnableMask#1 – Bit Meaning (1 = affected, 0 = not affected)

7 (Most significant bit) Determines whether or not Parameter #1 (IAC Pintle Position) will be affected by the
request.

6 Determines whether Parameter #2 (RPM) will be affected by the request.

5 Determines whether Parameter #3 (Pedal Position A) will be affected by the request.

4 Determines whether Parameter #4 (Pedal Position B) will be affected by the request.

3 Determines whether Parameter #5 (EGR Duty Cycle) will be affected by the request.

2 No affect due to no corresponding parameter.

1 No affect due to no corresponding parameter.

0 (Least significant bit) No affect due to no corresponding parameter.

12.2.5.4.2 Case #1 — Control IAC Pintle Position Only

Table 336 — InputOutputControlByIdentifier request message flow example #3 — Case #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier request SID 2F IOCBI

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 55 (IAC/RPM/PPA/PPB/EGR) 55 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
shortTermAdjustment

03 IOCP_STA

#5 controlOptionRecord [controlState#1] = IAC Pintle Position
(7 counts)

07 CS_1

#6 controlOptionRecord [controlState#2] = RPM (XX) XX CS_2

#7 controlOptionRecord [controlState#3] = RPM (XX) XX CS_3

#8 controlOptionRecord [controlState#4] = Pedal Position A (Y) and B
(Z)

YZ CS_4

#9 controlOptionRecord [controlState#5] = EGR Duty Cycle (XX) XX CS_5

#10 ControlEnableMask [controlMask#1] = Control IAC Pintle Position
ONLY

80 CM_1

NOTE The values transmitted for RPM, Pedal Position A, Pedal Position B and EGR Duty Cycle in controlState#2 -
#5 are irrelevant because the controlMask#1 parameter specifies that only the first parameter in the dataIdentifier will be
affected by the request.

ISO 14229:2006(E)

218 © ISO 2006 – All rights reserved

Table 337 — InputOutputControlByIdentifier positive response message flow example #3 — Case #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier response SID 6F IOCBIPR

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 55 (IAC/RPM/PPA/PPB/EGR) 55 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
shortTermAdjustment

03 IOCP_STA

#5 controlOptionRecord [controlState#1] = IAC Pintle Position
(7 counts)

07 CS_1

#6 controlOptionRecord [controlState#2] = RPM (750 U/min) 02 CS_2

#7 controlOptionRecord [controlState#3] = RPM EE CS_3

#8 controlOptionRecord [controlState#4] = Pedal Position A (8%)
 Pedal Position B (16%)

12 CS_4

#9 controlOptionRecord [controlState#5] = EGR Duty Cycle (35%) 59 CS_5

The value transmitted for all parameters in controlState#1 - controlState#5 shall reflect the current state of the
system.

12.2.5.4.3 Case #2 — Control RPM Only

Table 338 — InputOutputControlByIdentifier request message flow example #3 — Case #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier request SID 2F IOCBI

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 55 (IAC/RPM/EGR) 55 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
shortTermAdjustment

03 IOCP_STA

#5 controlOptionRecord [controlState#1] = IAC Pintle Position
(XX counts)

XX CS_1

#6 controlOptionRecord [controlState#2] = RPM (03E8 hex =
1000 /min)

03 CS_2

#7 controlOptionRecord [controlState#3] = RPM E8 CS_3

#8 controlOptionRecord [controlState#4] = Pedal Position A (Y) and B
(Z)

YZ CS_4

#9 controlOptionRecord [controlState#5] = EGR Duty Cycle (XX) XX CS_5

#10 ControlEnableMask [controlMask#1] = Control RPM ONLY 40 CM_1

NOTE The values transmitted for IAC Pintle Position, Pedal Position A, Pedal Position B and EGR Duty Cycle in
controlState#1 and controlState#4 - #5 are irrelevant because the controlMask#1 parameter specifies that only the second
parameter in the dataIdentifier will be affected by the request.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 219

Table 339 — InputOutputControlByIdentifier positive response message flow example #3 — Case #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier response SID 6F IOCBIPR

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 55 (IAC/RPM/PPA/PPB/EGR) 55 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
shortTermAdjustment

03 IOCP_STA

#5 controlOptionRecord [controlState#1] = IAC Pintle Position
(9 counts)

09 CS_1

#6 controlOptionRecord [controlState#2] = RPM (950 U/min) 03 CS_2

#7 controlOptionRecord [controlState#3] = RPM B6 CS_3

#8 controlOptionRecord [controlState#4] = Pedal Position A (8%)
 Pedal Position B (16%)

12 CS_4

#9 controlOptionRecord [controlState#5] = EGR Duty Cycle (35%) 59 CS_5

The value transmitted for all parameters in controlState#1 - controlState#5 shall reflect the current state of the
system.

12.2.5.4.4 Case #3 — Control both Pedal Position A and EGR Duty Cycle

Table 340 — InputOutputControlByIdentifier request message flow example #3 — Case #3

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier request SID 2F IOCBI

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 55 (IAC/RPM/PPA/PPB/EGR) 55 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
shortTermAdjustment

03 IOCP_STA

#5 controlOptionRecord [controlState#1] = IAC Pintle Position (XX) XX CS_1

#6 controlOptionRecord [controlState#2] = RPM (XX) XX CS_2

#7 controlOptionRecord [controlState#3] = RPM (XX) XX CS_3

#8 controlOptionRecord [controlState#4] = Pedal Position A (3 hex = 24 %)
 Pedal Position B (Z)

3Z CS_4

#9 controlOptionRecord [controlState#5] = EGR Duty Cycle (45%) 72 CS_5

#10 ControlEnableMask [controlMask#1] = Control Pedal Position A and
EGR

28 CM_1

NOTE The values transmitted for IAC Pintle Position, RPM and Pedal Position B in controlState#1 - #3 and
controlState#4 (bits 3-0) are irrelevant because the controlMask#1 parameter specifies that only the third and fifth
parameter in the dataIdentifier will be affected by the request.

ISO 14229:2006(E)

220 © ISO 2006 – All rights reserved

Table 341 — InputOutputControlByIdentifier positive response message flow example #3 — Case #3

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier response SID 6F IOCBIPR

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 55 (IAC/RPM/PPA/PPB/EGR) 55 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
shortTermAdjustment

03 IOCP_STA

#5 controlOptionRecord [controlState#1] = IAC Pintle Position
(7 counts)

07 CS_1

#6 controlOptionRecord [controlState#2] = RPM (850 U/min) 03 CS_2

#7 controlOptionRecord [controlState#3] = RPM 52 CS_3

#8 controlOptionRecord [controlState#4] = Pedal Position A (24%)
 Pedal Position B (16%)

32 CS_4

#9 controlOptionRecord [controlState#4] = EGR Duty Cycle (41%) 69 CS_5

NOTE The value transmitted for all parameters in controlState#1 - controlState#5 shall reflect the current state of the
system.

12.2.5.4.5 Case #4 — Return control of all parameters to the ECU

Table 342 — InputOutputControlByIdentifier request message flow example #3 — Case #4

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier request SID 2F IOCBI

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 55 (IAC/RPM/PPA/PPB/EGR) 55 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
returnControlToECU

00 RCTECU

#5 ControlEnableMask [controlMask#1] = All elemental parameters FF CM_1

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 221

Table 343 — InputOutputControlByIdentifier positive response message flow example #3 — Case #4

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier response SID 6F IOCBIPR

#2 dataIdentifier [byte#1] = 01 01 IOI_B1

#3 dataIdentifier [byte#2] = 55 (IAC/RPM/PPA/PPB/EGR) 55 IOI_B2

#4 controlOptionRecord [inputOutputControlParameter] =
returnControlToECU

00 RCTECU

#5 controlOptionRecord [controlState#1] = IAC Pintle Position
(9 counts)

09 CS_1

#6 controlOptionRecord [controlState#2] = RPM (850 U/min) 03 CS_2

#7 controlOptionRecord [controlState#3] = RPM 52 CS_3

#8 controlOptionRecord [controlState#4] = Pedal Position A (8%)
 Pedal Position B (16%)

12 CS_4

#9 controlOptionRecord [controlState#4] = EGR Duty Cycle (35%) 59 CS_5

The value transmitted for all parameters in controlState#1 - controlState#5 shall reflect the current state of the
system.

12.2.5.5 Example #4 — Device Control (EGR & IAC Control)

This example uses the controlState#1 parameter of the controlOptionRecord of the request message as an
additional control byte.

This message flow example will show how a client could send device control equivalent messages to a server
to control multiple inputs/outputs at the same time.

The output control mapping is based on the enable/control byte definitions in the tables below and the brief
descriptions that follow:

Table 344 — Example Data Definition

Enable byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

#1 — — — — — EGR Enable IAC 0 = POS;
1 = RPM IAC Control Enable

Control byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

#1 IAC Pintle Position (n = counts) or Desired Engine RPM (RPM = n * 12.5)

#2 EGR Duty Cycle: Linear Scaling, 0 counts = 0 %, 255 counts = 100 %

The record of enable/control bytes given above allows the client to

⎯ take control of the Idle Air Control (IAC) motor by placing a 1 in bit 0 of the enable byte,

⎯ command a pintle position or desired engine idle speed (based on the value of the enable byte bit 1) by
placing the appropriate value in the first control byte,

⎯ take control of Exhaust Gas Recirculation (EGR) Valve by placing a 1 in bit 2 of the enable byte.

ISO 14229:2006(E)

222 © ISO 2006 – All rights reserved

The unused bits/bytes are ignored for the purposes of the examples in this subclause.

In order to maximize the amount of user data that can be placed in a single request message, it is assumed
for this example that the Enable Byte shown above represents the low byte of the dataIdentifier. The high byte
of the dataIdentifier would be interpreted as a command parameter identifier (CPID) and would be set to
01 hex for this example (can be any value between 00 hex and EF hex; F0 hex to FC hex and FF hex are
reserved for general purposes).

The interpretation of the dataIdentifier given above ends up in the following list of dataIdentifier values and
their corresponding usage:

Table 345 — dataIdentifier values

DataIdentifier value (hex) Description

high byte
(CPID)

low byte
(enable byte)

resulting
value (hex)

01 00 0100 Disable IAC Control and EGR Control.

01 01 0101 Control IAC pintle position and disable EGR Control.

01 02 0102 Disable IAC Control and EGR Control.

01 03 0103 Control IAC desired engine RPM and disable EGR control.

01 04 0104 Control EGR Duty Cycle and disable IAC Control.

01 05 0105 Control EGR Duty Cycle and IAC pintle position.

01 06 0106 Control EGR Duty Cycle and disable IAC Control.

01 07 0107 Control EGR Duty Cycle and IAC desired engine RPM.

The following message flow shows how the client controls the EGR duty cycle and the IAC pintle position at
the same time (single request).

Table 346 — InputOutputControlByIdentifier request message flow example #4
Control EGR Duty Cycle and IAC pintle position

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier request SID 2F IOCBI

#2 dataIdentifier [byte#1] = 01 (CPID) 01 IOI_B1

#3 dataIdentifier [byte#2] = 05 05 IOI_B2

#4 controlOptionRecord [controlState#1] = IAC Pintle Position
(7 counts)

07 CS_1

#5 controlOptionRecord [controlState#2] = EGR Duty Cycle (35 %) 35 CS_2

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 223

Table 347 — InputOutputControlByIdentifier positive response message flow example #4
Control EGR Duty Cycle and IAC pintle position

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier response SID 6F IOCBIPR

#2 dataIdentifier [byte#1] = 01 (CPID) 01 IOI_B1

#3 dataIdentifier [byte#2] = 05 05 IOI_B2

The following message flow shows how the client controls the EGR duty cycle and the IAC desired engine
RPM at the same time (single request).

Table 348 — InputOutputControlByIdentifier request message flow example #4
Control EGR Duty Cycle and IAC desired engine RPM

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier request SID 2F IOCBI

#2 dataIdentifier [byte#1] = 01 (CPID) 01 IOI_B1

#3 dataIdentifier [byte#2] = 07 07 IOI_B2

#4 controlOptionRecord [controlState#1] = IAC Desired Engine RPM
(800)

40 CS_1

#5 controlOptionRecord [controlState#2] = EGR Duty Cycle (43 %) 43 CS_2

Table 349 — InputOutputControlByIdentifier positive response message flow example #4
Control EGR Duty Cycle and IAC desired engine RPM

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 InputOutputControlByIdentifier response SID 6F IOCBIPR

#2 dataIdentifier [byte#1] = 01 (CPID) 01 IOI_B1

#3 dataIdentifier [byte#2] = 05 07 IOI_B2

ISO 14229:2006(E)

224 © ISO 2006 – All rights reserved

13 Remote activation of routine functional unit

13.1 Overview

Table 350 — Remote activation of routine functional unit

Service Description

RoutineControl The client requests to start, stop a routine in the server(s) or requests the
routine results.

This functional unit specifies the services of remote activation of routines as they shall be implemented in the
servers and client. The following subclause describes two (2) different methods of implementation (Methods
“A” and “B”). There may be other methods of implementation possible. Methods A and B shall be used as a
guideline for implementation of routine services.

Each method may feature the functionality to request a routine results service after the routine has been
stopped. The selection of method and the implementation is the responsibility of the vehicle manufacturer and
system supplier.

The following is a brief description of Methods A and B.

⎯ Method A:

⎯ This method is based on the assumption that after a routine has been started by the client in the
server’s memory, the client shall be responsible for stopping the routine.

⎯ The server routine shall be started in the server’s memory some time between the completion of the
RoutineControl request message that starts the routine and the completion of the first response
message (if “positive” based on the server’s conditions).

⎯ The server routine shall be stopped in the server’s memory some time after the completion of the
StopRoutine request message and the completion of the first response message (if “positive” based
on the server’s conditions).

⎯ The client may request routine results after the routine has been stopped.

⎯ Method B:

⎯ This method is based on the assumption that after a routine has been started by the client in the
server’s memory, then the server shall be responsible for stopping the routine.

⎯ The server routine shall be started in the server’s memory some time between the completion of the
RoutineControl request message that starts the routine and the completion of the first response
message (if “positive” based on the server’s conditions).

⎯ The server routine shall be stopped at any time as programmed or previously initialized in the
server’s memory.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 225

13.2 RoutineControl (31 hex) service

13.2.1 Service description

13.2.1.1 Overview

The RoutineControl service is used by the client to

⎯ start a routine,

⎯ stop a routine, and

⎯ request routine results.

A routine is referenced by a two-byte routineIdentifier.

The following subclauses specify start routine, stop routine, and request routine results referenced by a
routineIdentifier.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in 7.5.2 in the event that those addressing methods are implemented for this service.

13.2.1.2 Start a routine referenced by a routineIdentifier

The routine shall be started in the server’s memory some time between the completion of the StartRoutine
request message and the completion of the first response message if the response message is positive or
negative, indicating that the request has already been performed or is in progress.

The routines could be either tests that run instead of normal operating code or routines that are enabled and
executed with the normal operating code running. Particularly in the first case, it might be necessary to switch
the server in a specific diagnostic session using the DiagnosticSessionControl service or to unlock the server
using the SecurityAccess service prior to using the StartRoutine service.

13.2.1.3 Stop a routine referenced by a routineIdentifier

The server routine shall be stopped in the server’s memory some time after the completion of the StopRoutine
request message and the completion of the first response message if the response message is positive or
negative, indicating that the request to stop the routine has already been performed or is in progress.

The server routine shall be stopped at any time as programmed or previously initialized in the server’s
memory.

13.2.1.4 Request routine results referenced by a routineIdentifier

This sub-function is used by the client to request results (e.g. exit status information) referenced by a
routineIdentifier and generated by the routine which was executed in the server’s memory.

Based on the routine results, which may have been received in the positive response message of the
stopRoutine sub-function parameter (e.g. normal/abnormalExitWithResults), the requestRoutineResults
sub-function shall be used.

An example of routineResults could be data collected by the server, which could not be transmitted during
routine execution because of server performance limitations.

ISO 14229:2006(E)

226 © ISO 2006 – All rights reserved

13.2.2 Request message

13.2.2.1 Request message definition

Table 351 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 RoutineControl Request Service Id M 31 RC

#2 sub-function = [
routineControlType]

M
00-FF

LEV_
RCTP_

#3
#4

routineIdentifier [] = [
byte#1 (MSB)
byte#2]

M
M

00-FF
00-FF

RI_
B1
B2

#5
:

#n

routineControlOptionRecord[] = [
routineControlOption#1
 :
routineControlOption#m]

Ca/U

:
C/U

00-FF

:
00-FF

RCEOR_
RCO_

:
RCO _

a The presence of the C parameter is user-optional for sub-function parameter startRoutine and stopRoutine.

13.2.2.2 Request message sub-function parameter $Level (LEV_) definition

The sub-function parameters are used by this service to select the control of the routine. Explanations and
usage of the possible levels are detailed below [suppressPosRspMsgIndicationBit (bit 7) not shown].

Table 352 — Request message sub-function definition

Hex
(bit 6-0) Description Cvt Mnemonic

00 ISOSAEReserved M ISOSAERESRVD

 This value is reserved by this document for future definition.

01 startRoutine U STR

 This parameter specifies that the server shall start the routine specified by the
routineIdentifier.

02 stopRoutine U STPR

 This parameter specifies that the server shall stop the routine specified by the
routineIdentifier.

03 requestRoutineResults U RRR

 This parameter specifies that the server shall return result values of the routine
specified by the routineIdentifier.

04 - 7F ISOSAEReserved M ISOSAERESRVD

 This value is reserved by this document for future definition.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 227

13.2.2.3 Request message data parameter definition

The following data parameters are defined for this service:

Table 353 — Request message data parameter definition

Definition

routineIdentifier

This parameter identifies a server local routine and is out of the range of defined dataIdentifiers (see Annex F).

routineControlOptionRecord

This parameter record contains either:
⎯ routine entry option parameters, which optionally specify start conditions of the routine (e.g. timeToRun,

startUpVariables, etc.); or
⎯ routine exit option parameters which optionally specify stop conditions of the routine (e.g.

timeToExpireBeforeRoutineStops, variables, etc.).

13.2.3 Positive response message

13.2.3.1 Positive response message definition

Table 354 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 RoutineControl Response Service Id S 71 RCPR

#2 routineControlType M 00-7F RCTP_

#3
#4

routineIdentifier [] = [
byte#1 (MSB)
byte#2]

M
M

00-FF
00-FF

RI_
B1
B2

#5
:

#n

routineStatusRecord[] = [
routineStatus#1
 :
routineStatus#m]

U
:
U

00-FF

:
00-FF

RSR_
RS_

:
RS _

ISO 14229:2006(E)

228 © ISO 2006 – All rights reserved

13.2.3.2 Positive response message data parameter definition

Table 355 — Response message data parameter definition

Definition

routineControlType

This parameter is an echo of bits 6 - 0 of the sub-function parameter from the request message.

routineIdentifier

This parameter is an echo of the routineIdentifier from the request message.

routineStatusRecord

This parameter record is used to give to the client either:
⎯ additional information about the status of the server following the start of the routine; or
⎯ additional information about the status of the server after the routine has been stopped (e.g. totalRunTime, results

generated by the routine before stopped, etc.); or

⎯ results (exit status information) of the routine which has been stopped previously in the server.

13.2.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in XTable 356X.

Table 356 — Supported negative response codes

Hex Description Cvt Mnemonic

12 subFunctionNotSupported M SFNS
 This code is returned if the requested sub-function is not supported.

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect M CNC

 This code shall be returned if the criteria for the request RoutineControl are not met.

24 requestSequenceError M RSE

 This code shall be returned if the “stopRoutine” or “requestRoutineResults” sub-
function is received without first receiving a “startRoutine” for the requested
routineIdentifier.

31 requestOutOfRange M ROOR

 This code shall be returned if:

1) the server does not support the requested routineIdentifier;

2) the user optional routineControlOptionRecord contains invalid data for the
requested routineIdentifier.

33 securityAccessDenied M SAD

 This code shall be sent if this code is returned if a client sends a request with a valid
secure routineIdentifier and the server’s security feature is currently active.

72 generalProgrammingFailure M GPF

 This return code shall be sent if the server detects an error when performing a
routine, which accesses server internal memory. An example is when the routine
erases or programmes a certain memory location in the permanent memory device
(e.g. Flash Memory) and the access to that memory location fails.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 229

13.2.5 Message flow example(s) RoutineControl

13.2.5.1 Example #1 — sub-function = startRoutine

This subclause specifies the test conditions for starting a routine in the server to continuously test (as fast as
possible) all input and output signals on intermittent while a technician “wiggles” all wiring harness connectors
of the system under test. The routineIdentifier references this routine by the routineIdentifier 0201 hex.

Test conditions: ignition = on, engine = off, vehicle speed = 0 [kph].

The client requests a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-
function parameter) to “FALSE” (‘0’).

Table 357 — RoutineControl request message flow — Example #1

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RoutineControl request SID 31 RC

#2 sub-function = startRoutine,
suppressPosRspMsgIndicationBit = FALSE

01 STR

#3 routineIdentifier [byte#1] (MSB) 02 RI_B1

#4 routineIdentifier [byte#2] 01 RI_B2

Table 358 — RoutineControl positive response message flow — Example #1

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RoutineControl response SID 71 RCPR

#2 routineControlType = startRoutine 01 STR

#3 routineIdentifier [byte#1] (MSB) 02 RI_B1

#4 routineIdentifier [byte#2] 01 RI_B2

13.2.5.2 Example #2 — sub-function = stopRoutine

This subclause specifies the test conditions for stopping a routine in the server which has been continuously
testing (as fast as possible) all input and output signals on intermittence while a technician “wiggled” all wiring
harness connectors of the system under test. The routineIdentifier references this routine by the
routineIdentifier 0201 hex.

Test conditions: ignition = on, engine = off, vehicle speed = 0 [kph].

The client requests a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-
function parameter) to “FALSE” (‘0’).

ISO 14229:2006(E)

230 © ISO 2006 – All rights reserved

Table 359 — RoutineControl request message flow — Example #2

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RoutineControl request SID 31 RC

#2 sub-function = stopRoutine,
suppressPosRspMsgIndicationBit = FALSE

02 STPR

#3 routineIdentifier [byte#1] (MSB) 02 RI_B1

#4 routineIdentifier [byte#2] 01 RI_B2

Table 360 — RoutineControl positive response message flow — Example #2

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 StopRoutine response SID 71 RCPR

#2 routineControlType = stopRoutine 02 STPR

#3 routineIdentifier [byte#1] (MSB) 02 RI_B1

#4 routineIdentifier [byte#2] 01 RI_B2

13.2.5.3 Example #3 — sub-function = requestRoutineResults

This example shows how to retrieve result values after a routine has finished. The routine has continuously
tested (as fast as possible) all input and output signals on intermittence while a technician “wiggled” all wiring
harness connectors of the system under test. The routineIdentifier to reference this routine is 0201 hex.

Test conditions: ignition = on, engine = off, vehicle speed = 0 [kph].

The client requests a response message by setting the suppressPosRspMsgIndicationBit (bit 7 of the sub-
function parameter) to “FALSE” (‘0’).

Table 361 — RequestRoutineResults request message flow example

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RoutineControl request SID 31 RC

#2 sub-function = requestRoutineResults,
suppressPosRspMsgIndicationBit = FALSE

03 RRR

#3 routineIdentifier [byte#1] (MSB) 02 RI_B1

#4 routineIdentifier [byte#2] 01 RI_B2

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 231

Table 362 — RequestRoutineResults positive response message flow example

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RoutineControl response SID 71 RCPR

#2 routineControlType = requestRoutineResults 03 RRR

#3 routineIdentifier [byte#1] (MSB) 02 RI_B1

#4 routineIdentifier [byte#2] 01 RI_B2

#5 routineStatusRecord [routineStatus#1] = inputSignal#1 57 RRS_

#6 routineStatusRecord [routineStatus #2] = inputSignal#2 33 RRS_

: : : :

#n routineStatusRecord [routineStatus #m] = inputSignal#m 8F RRS_

14 Upload download functional unit

14.1 Overview

Table 363 — Upload download functional unit

Service Description

RequestDownload The client requests the negotiation of a data transfer from the client to the server.

RequestUpload The client requests the negotiation of a data transfer from the server to the client.

TransferData The client transmits data to the server (download) or requests data from the server (upload).

RequestTransferExit The client requests the termination of a data transfer.

14.2 RequestDownload (34 hex) service

14.2.1 Service description

The requestDownload service is used by the client to initiate a data transfer from the client to the server
(download).

After the server has received the requestDownload request message, the server shall take all necessary
actions to receive data before it sends a positive response message.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in X7.5.3 in the event that those addressing methods are implemented for this service.

ISO 14229:2006(E)

232 © ISO 2006 – All rights reserved

14.2.2 Request message

14.2.2.1 Request message definition

Table 364 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 RequestDownload Request Service Id M 34 RD

#2 dataFormatIdentifier M 00-FF DFI_

#3 addressAndLengthFormatIdentifier M 00-FF ALFID

#4
:

#(m-1)+4

memoryAddress[] = [
byte#1 (MSB)
:
byte#m]

M
:

CB1B
a

00-FF

:
00-FF

MA_
B1
:

Bm

#n-(k-1)

:
#n

memorySize[] = [
byte#1 (MSB)
:
byte#k]

M
:

CB2B
b

00-FF

:
00-FF

MS_
B1
:

Bk
a The presence of the CB1B parameter depends on the address length information parameter of the
addressAndLengthFormatIdentifier.
b The presence of the CB2B parameter depends on the memory size length information of the addressAndLengthFormatIdentifier.

14.2.2.2 Request message sub-function parameter $Level (LEV_) definition

This service does not use a sub-function parameter.

14.2.2.3 Request message data parameter definition

The following data parameters are defined for this service.

Table 365 — Request message data parameter definition

Definition

dataFormatIdentifier
This data parameter is a one-byte value with each nibble encoded separately. The high nibble specifies the
“compressionMethod” and the low nibble specifies the “encryptingMethod”. The value 00 hex specifies that no
compressionMethod nor encryptingMethod is used. Values other than 00 hex are vehicle-manufacturer-specific.

addressAndLengthFormatIdentifier
This parameter is a one-byte value with each nibble encoded separately (see Annex G for example values):
⎯ bit 7 - 4: Length (number of bytes) of the memorySize parameter;
⎯ bit 3 - 0: Length (number of bytes) of the memoryAddress parameter.

memoryAddress
The parameter memoryAddress is the starting address of the server memory to which the data is to be written. The
number of bytes used for this address is defined by the low nibble (bit 3 - 0) of the addressFormatIdentifier. Byte#m in
the memoryAddress parameter is always the least significant byte of the address being referenced in the server. The
most significant byte of the address can be used as a memoryIdentifier.
An example of the use of a memoryIdentifier would be a dual processor server with 16-bit addressing and memory
address overlap (when a given address is valid for either processor but yields a different physical memory device or
when internal and external flash is used). In this case, an otherwise unused byte within the memoryAddress parameter
can be specified as a memoryIdentifier used to select the desired memory device. Usage of this functionality shall be as
defined by vehicle manufacturer/system supplier.
memorySize (unCompressedMemorySize)
This parameter shall be used by the server to compare the uncompressed memory size with the total amount of data
transferred during the TransferData service. This increases the programming security. The number of bytes used for this
size is defined by the high nibble (bit 7 - 4) of the addressFormatIdentifier.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 233

14.2.3 Positive response message

14.2.3.1 Positive response message definition

Table 366 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 RequestDownload Response Service Id S 74 RDPR

#2 lengthFormatIdentifier M 00-F0 LFID

#3
:

#n

maxNumberOfBlockLength = [
byte#1 (MSB)
:
byte#m]

M
:
M

00-FF

:
00-FF

MNROB_
B1
:

Bm

14.2.3.2 Positive response message data parameter definition

Table 367 — Response message data parameter definition

Definition

lengthFormatIdentifier

This parameter is a one-byte value with each nibble encoded separately:

⎯ bit 7 - 4: length (number of bytes) of the maxNumberOfBlockLength parameter;

⎯ bit 3 - 0: reserved by document, to be set to 0 hex.

The format of this parameter is compatible to the format of the addressAndLengthFormatIdentifier parameter contained
in the request message, except that the lower nibble has to be set to 0 hex.

maxNumberOfBlockLength

This parameter is used by the requestDownload positive response message to inform the client how many data bytes
(maxNumberOfBlockLength) shall be included in each TransferData request message from the client. This length reflects
the complete message length, including the service identifier and the data parameters present in the TransferData
request message. This parameter allows the client to adapt to the receive buffer size of the server before it starts
transferring data to the server.

ISO 14229:2006(E)

234 © ISO 2006 – All rights reserved

14.2.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in XTable 368X.

Table 368 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect M CNC

 This return code shall be sent if a server receives a request for this service while in
the process of receiving a download of a software or calibration module. This could
occur if there is a data size mismatch between the server and the client during the
download of a module.

31 requestOutOfRange M ROOR

 This return code shall be sent if

1) the specified dataFormatIdentifier is not valid,

2) the specified addressAndLengthFormatIdentifier is not valid, or

3) the specified memoryAddress/memorySize is not valid.

33 securityAccessDenied M SAD

 This return code shall be sent if the server is secure (for servers that support the
SecurityAccess service) when a request for this service has been received.

70 uploadDownloadNotAccepted M UDNA

 This response code indicates that an attempt to download to a server's memory
cannot be accomplished due to fault conditions.

14.2.5 Message flow example(s) RequestDownload

See X14.5.5X for a complete message flow example.

14.3 RequestUpload (35 hex) service

14.3.1 Service description

The RequestUpload service is used by the client to initiate a data transfer from the server to the client (upload).

After the server has received the requestUpload request message, the server shall take all necessary actions
to send data before it sends a positive response message.

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in X7.5.3 in the event that those addressing methods are implemented for this service.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 235

14.3.2 Request message

14.3.2.1 Request message definition

Table 369 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 RequestUpload Request Service Id M 35 RU

#2 dataFormatIdentifier M 00-FF DFI_

#3 addressAndLengthFormatIdentifier M 00-FF ALFID

#4
:

#(m-1)+4

memoryAddress[] = [
byte#1 (MSB)
:
byte#m]

M
:

CB1B
a

00-FF

:
00-FF

MA_
B1
:

Bm

#n-(k-1)

:
#n

memorySize[] = [
byte#1 (MSB)
:
byte#k]

M
:

CB2B
b

00-FF

:
00-FF

MS_
B1
:

Bk
a The presence of the CB1B parameter depends on the address length information parameter of the
addressAndLengthFormatIdentifier.
b The presence of the CB2B parameter depends on the memory size length information of the addressAndLengthFormatIdentifier.

14.3.2.2 Request message sub-function parameter $Level (LEV_) definition

This service does not use a sub-function parameter.

14.3.2.3 Request message data parameter definition

The following data parameters are defined for this service.

Table 370 — Request message data parameter definition

Definition

dataFormatIdentifier
This data parameter is a one byte value with each nibble encoded separately. The high nibble specifies the
“compressionMethod”, and the low nibble specifies the “encryptingMethod”. The value 00 hex specifies that no
compressionMethod nor encryptingMethod is used. Values other than 00 hex are vehicle manufacturer specific.
addressAndLengthFormatIdentifier
This parameter is a one byte value with each nibble encoded separately (see Annex XGX for example values):
⎯ bit 7 - 4: length (number of bytes) of the memorySize parameter;
⎯ bit 3 - 0: length (number of bytes) of the memoryAddress parameter.
memoryAddress
The parameter memoryAddress is the starting address of server memory from which data is to be retrieved. The number
of bytes used for this address is defined by the low nibble (bit 3 - 0) of the addressFormatIdentifier. Byte#m in the
memoryAddress parameter is always the least significant byte of the address being referenced in the server. The most
significant byte of the address can be used as a memoryIdentifier.
An example of the use of a memoryIdentifier would be a dual processor server with 16-bit addressing and memory
address overlap (when a given address is valid for either processor but yields a different physical memory device or
when internal and external flash is used). In this case, an otherwise unused byte within the memoryAddress parameter
can be specified as a memoryIdentifier used to select the desired memory device. Usage of this functionality shall be as
defined by the vehicle manufacturer/system supplier.
memorySize (unCompressedMemorySize)
This parameter shall be used by the server to compare the uncompressed memory size with the total amount of data
transferred during the TransferData service. This increases the programming security. The number of bytes used for this
size is defined by the high nibble (bit 7 - 4) of the addressAndLengthFormatIdentifier.

ISO 14229:2006(E)

236 © ISO 2006 – All rights reserved

14.3.3 Positive response message

14.3.3.1 Positive response message definition

Table 371 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 RequestUpload Response Service Id S 75 RUPR

#2 lengthFormatIdentifier M 00-F0 LFID

#3
:

#n

maxNumberOfBlockLength = [
byte#1 (MSB)
:
byte#m]

M
:
M

00-FF

:
00-FF

MNROB_
B1
:

Bm

14.3.3.2 Positive response message data parameter definition

Table 372 — Response message data parameter definition

Definition

lengthFormatIdentifier

This parameter is a one-byte value with each nibble encoded separately:

⎯ bit 7 - 4: length (number of bytes) of the maxNumberOfBlockLength parameter;

⎯ bit 3 - 0: reserved by document, to be set to 0 hex.

The format of this parameter is compatible to the format of the addressAndLengthFormatIdentifier parameter contained
in the request message, except that the lower nibble has to be set to 0 hex.

maxNumberOfBlockLength

This parameter is used by the requestUpload positive response message to inform the client how many data bytes shall
be included in each TransferData positive response message from the server. This length reflects the complete message
length, including the service identifier and the data parameters present in the TransferData positive response message.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 237

14.3.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in XTable 373X.

Table 373 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

22 conditionsNotCorrect M CNC

 This return code shall be sent if the criteria for the requestUpload are not met. This
could occur if a server receives a request for this service while a requestUpload is
already active, but not yet completed.

31 requestOutOfRange M ROOR

 This return code shall be sent if:

1) the specified dataFormatIdentifier is not valid;

2) the specified addressAndLengthFormatIdentifier is not valid; or

3) the specified memoryAddress/memorySize is not valid.

33 securityAccessDenied M SAD

 This return code shall be sent if the server is secure (for servers that support the
SecurityAccess service) when a request for this service has been received.

70 uploadDownloadNotAccepted M UDNA

 This response code indicates that an attempt to upload to a server’s memory cannot be
accomplished due to fault conditions.

14.3.5 Message flow example(s) RequestUpload

See X14.5.5X for a complete message flow example.

14.4 TransferData (36 hex) service

14.4.1 Service description

The TransferData service is used by the client to transfer data either from the client to the server (download)
or from the server to the client (upload).

The data transfer direction is defined by the preceding RequestDownload or RequestUpload service. If the
client initiated a RequestDownload, the data to be downloaded is included in the parameter(s)
transferRequestParameter in the TransferData request message(s). If the client initiated a RequestUpload,
the data to be uploaded is included in the parameter(s) transferResponseParameter in the TransferData
response message(s).

The TransferData service request includes a blockSequenceCounter to allow for improved error handling in
case a TransferData service fails during a sequence of multiple TransferData requests. The
blockSequenceCounter of the server shall be initialized to one (1) when receiving a RequestDownload
(34 hex) or RequestUpload (35 hex) request message. This means that the first TransferData (36 hex)
request message following the RequestDownload (34 hex) or RequestUpload (35 hex) request message
starts with a blockSequenceCounter of one (1).

ISO 14229:2006(E)

238 © ISO 2006 – All rights reserved

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in X7.5.3 in the event that those addressing methods are implemented for this service.

14.4.2 Request message

14.4.2.1 Request message definition

Table 374 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 TransferData Request Service Id M 36 TD

#2 blockSequenceCounter M 00-FF BSC

#3
:

#n

transferRequestParameterRecord[] = [
transferRequestParameter#1
:
transferRequestParameter#m]

Ca

:
U

00-FF

:
00-FF

TRPR_
TRTP_

:
TRTP_

a C = Conditional: this parameter is mandatory if a download is in progress.

14.4.2.2 Request message sub-function parameter $Level (LEV_) definition

This service does not use a sub-function parameter.

14.4.2.3 Request message data parameter definition

The following data parameters are defined for this service.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 239

Table 375 — Request message data parameter definition

Definition

blockSequenceCounter

The blockSequenceCounter parameter value starts at 01 hex with the first TransferData request that follows the
RequestDownload (34 hex) or RequestUpload (35 hex) service. Its value is incremented by 1 for each subsequent
TransferData request. At the value of FF hex, the blockSequenceCounter rolls over and starts at 00 hex with the next
TransferData request message.

Example use cases:

a) If a TransferData request to download data is correctly received and processed in the server but the positive
response message does not reach the client, then the client would determine an application layer timeout and would
repeat the same request (including the same blockSequenceCounter). The server would receive the repeated
TransferData request and could determine based on the included blockSequenceCounter that this TransferData
request is repeated. The server would send the positive response message immediately without writing the data
once again into its memory.

b) If the TransferData request to download data is not received correctly in the server, then the server would not send
a positive response message. The client would determine an application layer timeout and would repeat the same
request (including the same blockSequenceCounter). The server would receive the repeated TransferData request
and could determine based on the included blockSequenceCounter that this is a new TransferData. The server
would process the service and would send the positive response message.

c) If a TransferData request to upload data is correctly received and processed in the server but the positive response
message does not reach the client, then the client would determine an application layer timeout and would repeat
the same request (including the same blockSequenceCounter). The server would receive the repeated
TransferData request and could determine based on the included blockSequenceCounter that this TransferData
request is repeated. The server would send the positive response message immediately, accessing the previously
provided data once again in its memory.

d) If the TransferData request to upload data is not received correctly in the server, then the server would not send a
positive response message. The client would determine an application layer timeout and would repeat the same
request (including the same blockSequenceCounter). The server would receive the repeated TransferData request
and could determine based on the included blockSequenceCounter that this is a new TransferData. The server
would process the service and would send the positive response message.

transferRequestParameterRecord

This parameter record contains parameter(s) which are required by the server to support the transfer of data. Format and
length of this/these parameter(s) are vehicle-manufacturer-specific.

Examples: For a download, the transferRequestParameterRecord includes the data to be transferred.

14.4.3 Positive response message

14.4.3.1 Positive response message definition

Table 376 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 TransferData Response Service Id S 76 TDPR

#2 blockSequenceCounter M 00-FF BSC

#3
:

#n

transferResponseParameterRecord[] = [
transferResponseParameter#1
:
transferResponseParameter#m]

Ca
:
U

00-FF

:
00-FF

TREPR_
TREP_

:
TREP

a C = Conditional: this parameter is mandatory if an upload is in progress.

ISO 14229:2006(E)

240 © ISO 2006 – All rights reserved

14.4.3.2 Positive response message data parameter definition

Table 377 — Response message data parameter definition

Definition

blockSequenceCounter

This parameter is an echo of the blockSequenceCounter parameter from the request message.

transferResponseParameterRecord

This parameter shall contain parameter(s) which are required by the client to support the transfer of data. Format and
length of this/these parameter(s) are vehicle-manufacturer-specific.

Examples: For a download, the parameter transferResponseParameterRecord could include a checksum computed by
the server. For an upload, the parameter transferResponseParameterRecord includes the uploaded data. For a
download, the parameter transferResponseParameterRecord should not repeat the transferRequestParameterRecord.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 241

14.4.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in XTable 378X.

Table 378 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF
 The length of the message is wrong (e.g. message length does not meet the

requirements of the maxNumberOfBlockLength parameter returned in the positive
response to requestDownload).

24 requestSequenceError M RSE
 The server shall use this response code:

1) if the RequestDownload or RequestUpload service is not active when a request for
this service is received;

2) if the RequestDownload or RequestUpload service is active, but the server has
already received all data as determined by the memorySize parameter in the active
RequestDownload or RequestUpload service.

The repetition of a TransferData request message with a blockSequenceCounter equal
to the one included in the previous TransferData request message shall be accepted by
the server.

31 requestOutOfRange M ROOR
 This return code shall be sent if the transferRequestParameterRecord contains

additional control parameters (e.g. additional address information) and this control
information is invalid.

71 transferDataSuspended M TDS
 This return code shall be sent if:

1) the response code indicates that a data transfer operation was halted due to a fault;
2) the download module length does not meet the requirements of the memorySize

parameter sent in the request message of the requestDownload service.

72 generalProgrammingFailure M GPF
 This return code shall be sent if the server detects an error when erasing or

programming a memory location in the permanent memory device (e.g. Flash Memory)
during the download of data.

73 wrongBlockSequenceCounter M WBSC
 This return code shall be sent if the server detects an error in the sequence of the

blockSequenceCounter.
The repetition of a TransferData request message with a blockSequenceCounter equal
to the one included in the previous TransferData request message shall be accepted by
the server.

92/93 voltageTooHigh/voltageTooLow M VTH/VTL
 This return code shall be sent, as applicable, if the voltage measured at the primary

power pin of the server is out of the acceptable range for downloading data into the
server’s permanent memory (e.g. Flash Memory).

14.4.5 Message flow example(s) TransferData

See X14.5.5X for a complete message flow example.

ISO 14229:2006(E)

242 © ISO 2006 – All rights reserved

14.5 RequestTransferExit (37 hex) service

14.5.1 Service description

This service is used by the client to terminate a data transfer between client and server (upload or download).

IMPORTANT — The server and the client shall meet the request and response message behaviour as
specified in X7.5.3X in the event that those addressing methods are implemented for this service.

14.5.2 Request message

14.5.2.1 Request message definition

Table 379 — Request message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 RequestTransferExit Request Service Id M 37 RTE

#2
:

#n

transferRequestParameterRecord[] = [
transferRequestParameter#1
:
transferRequestParameter#m]

U
:
U

00-FF

:
00-FF

TRPR_
TRTP_

:
TRTP_

14.5.2.2 Request message sub-function parameter $Level (LEV_) definition

This service does not use a sub-function parameter.

14.5.2.3 Request message data parameter definition

The following data parameters are defined for this service.

Table 380 — Request message data parameter definition

Definition

transferRequestParameterRecord

This parameter record contains parameter(s) which are required by the server to support the transfer of data. Format and
length of this/these parameter(s) are vehicle-manufacturer-specific.

14.5.3 Positive response message

14.5.3.1 Positive response message definition

Table 381 — Positive response message definition

A_Data byte Parameter name Cvt Hex value Mnemonic

#1 RequestTransferExit Response Service Id S 77 RTEPR

#2
:

#n

transferResponseParameterRecord[] = [
transferResponseParameter#1
:
transferResponseParameter#m]

U
:
U

00-FF

:
00-FF

TREPR_
TREP_

:
TREP

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 243

14.5.3.2 Positive response message data parameter definition

Table 382 — Response message data parameter definition

Definition

transferResponseParameterRecord

This parameter shall contain parameter(s) which are required by the client to support the transfer of data. Format and
length of this/these parameter(s) are vehicle-manufacturer-specific.

14.5.4 Supported negative response codes (NRC_)

The following negative response codes shall be implemented for this service. The circumstances under which
each response code would occur are documented in XTable 383X.

Table 383 — Supported negative response codes

Hex Description Cvt Mnemonic

13 incorrectMessageLengthOrInvalidFormat M IMLOIF

 The length of the message is wrong.

24 requestSequenceError M RSE

 This return code shall be sent if:

1) the programming process is not completed when a request for this service is
received;

2) the RequestDownload or RequestUpload service is not active.

14.5.5 Message flow example(s) for downloading/uploading data

14.5.5.1 Download data to a server

14.5.5.1.1 Assumptions

This section specifies the conditions for transfering data (download) from the client to the server.

The example consists of three (3) steps.

In the firstP step, the client and the server execute a requestDownload service. With this service, the following
information is exchanged as parameters in the request and positive response messages between the client
and the server:

Table 384 — Definition of transferRequestParameter values

Data parameter name Data parameter
value(s) (hex) Data parameter description

memoryAddress (3 bytes) 602000 memoryAddress (start) to which data is to be downloaded

dataFormatIdentifier 11 dataFormatIdentifier (compressionMethod = $1x)
(encryptingMethod = $x1)

unCompressedMemorySize
(3 bytes) 00FFFF

uncompressedMemorySize = (64 Kbytes)
This parameter value shall be used by the server to compare to the
actual number of bytes transferred during the execution of the
requestTransferExit service.

ISO 14229:2006(E)

244 © ISO 2006 – All rights reserved

Table 385 — Definition of transferResponseParameter value

Data parameter name Data parameter
value(s) (hex) Data parameter description

maximumNumberOfBlockLength 0081
maximumNumberOfBlockLength:
[serviceId + BlockSequenceCounter (1 byte) + 127 server
data bytes = 129 data bytes]

In the second step, the client transfers 64 KBytes (the number of transferData services with 127 data bytes
can not be calculated because the compression method and its compression ratio is supplier-specific) of data
to the flash memory starting at memoryaddress 602000 hex to the server.

In the third step, the client terminates the data transfer to the server with a requestTransferExit service.

Test conditions: ignition = on, engine = off, vehicle speed = 0 [kph].

It is assumed that for this example the server supports a three-byte memoryAddress and a three-byte
unCompressedMemorySize. Furthermore, it is assumed that the server supports a blockSequenceCounter in
the TransferData (36 hex) service. The number of TransferData services with 127 data bytes can not be
calculated because the compression method and its compression ratio is supplier-specific. Therefore, it is
assumed that the last TransferData request message contains a blockSequenceCounter equal to 68 hex.

14.5.5.1.2 Step #1 — Request for download

Table 386 — RequestDownload request message flow example

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RequestDownload request SID 34 RD

#2 dataFormatIdentifier 11 DFI

#3 addressAndLengthFormatIdentifier 33 ALFID

#4 memoryAddress [byte #1] (MSB) 60 MA_B1

#5 memoryAddress [byte #2] 20 MA_B2

#6 memoryAddress [byte #3] (LSB) 00 MA_B3

#7 unCompressedMemorySize [byte #1] (MSB) 00 UCMS_B1

#8 unCompressedMemorySize [byte #2] FF UCMS_B2

#9 unCompressedMemorySize [byte #3] (LSB) FF UCMS_B3

Table 387 — RequestDownload positive response message flow example

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RequestDownload response SID 74 RDPR

#2 LengthFormatIdentifier 20 LFID

#3 maxNumberOfBlockLength [byte #1] (MSB) 00 MNROB_B1

#4 maxNumberOfBlockLength [byte #2] (LSB) 81 MNROB_B2

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 245

14.5.5.1.3 Step #2 — Transfer data

Table 388 — TransferData request message flow example

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 TransferData request SID 36 TD

#2 blockSequenceCounter 01 BSC

#3

transferRequestParameterRecord [transferRequestParameter#1] =
dataByte3

xx

TRTP_1

: : : :

#129 transferRequestParameterRecord [transferRequestParameter#127] =
dataByte129

xx TRTP_127

Table 389 — TransferData positive response message flow example

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 TransferData response SID 76 TDPR

#2 blockSequenceCounter 01 BSC

Table 390 — TransferData request message flow example

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 TransferData request SID 36 TD

#2 blockSequenceCounter 68 BSC

#3

transferRequestParameterRecord [transferRequestParameter#1] =
dataByte3

xx

TRTP_1

: : : :

#n+2 transferRequestParameterRecord [transferRequestParameter#n-2] =
dataByte n

xx TRTP_n-2

Table 391 — TransferData positive response message flow example

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 TransferData response SID 76 TDPR

#2 blockSequenceCounter 68 BSC

ISO 14229:2006(E)

246 © ISO 2006 – All rights reserved

14.5.5.1.4 Step #3 — Request Transfer exit

Table 392 — RequestTransferExit request message flow example

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RequestTransferExit request SID 37 RTE

Table 393 — RequestTransferExit positive response message flow example

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RequestTransferExit response SID 77 RTEPR

14.5.5.2 Upload data from a server

This subclause specifies the conditions for transfering data (upload) from a server to the client.

The example consists of three (3) steps.

In the first step, the client and the server execute a requestUpload service. With this service, the following
information is exchanged as parameters in the request and positive response messages between the client
and the server:

Table 394 — Definition of transferRequestParameter values

Data parameter name Data parameter
value(s) (hex) Data parameter description

memoryAddress (3 bytes) 201000 memoryAddress (start) to upload data from

dataFormatIdentifier 11 dataFormatIdentifier (compressionMethod = $1x)
(encryptingMethod = $x1)

uncompressedMemorySize
(3 bytes) 0001FF

uncompressedMemorySize = (511 bytes)

This parameter value shall indicate how many data bytes shall be
transferred, and shall be used by the server to compare to the
actual number of bytes transferred during execution of the
requestTransferExit service.

Table 395 — Definition of transferResponseParameter value

Data parameter name Data parameter
value(s) (hex) Data parameter description

maximumNumberOfBlockLength 0081
maximumNumberOfBlockLength:

[serviceId + BlockSequenceCounter (1 byte) + 127 server data
bytes = 129 data bytes]

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 247

In the second step, the server transfers 511 data bytes [four transferData services with 129 (127 server data
bytes + 1 serviceId data byte + 1 blockSequenceCounter byte) data bytes and one transferData service with
five (3 server data bytes + 1 serviceId data byte+ 1 blockSequenceCounter byte) data bytes] from the external
RAM starting at memoryaddress 201000 hex in the server.

In the third step, the client terminates the data transfer to the server with a requestTransferExit service.

Test conditions: ignition = on, engine = off, vehicle speed = 0 [kph].

It is assumed that for this example the server supports a three-byte memoryAddress and a three-byte
unCompressedMemorySize. Furthermore, it is assumed that the server supports a blockSequenceCounter in
the TransferData (36 hex) service.

14.5.5.2.1 Step #1 — Request for upload

Table 396 — RequestUpload request message flow example

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RequestUpload request SID 35 RU

#2 dataFormatIdentifier 11 DFI

#3 addressAndLengthFormatIdentifier 33 ALFID

#4 memoryAddress [byte#1] (MSB) 20 MA_B1

#5 memoryAddress [byte#2] 10 MA_B2

#6 memoryAddress [byte#3] (LSB) 00 MA_B3

#7 unCompressedMemorySize [byte#1] (MSB) 00 UCMS_B1

#8 unCompressedMemorySize [byte#2] 01 UCMS_B2

#9 unCompressedMemorySize [byte#3] (LSB) FF UCMS_B3

Table 397 — RequestUpload positive response message flow example

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RequestUpload response SID 75 RUPR

#2 lengthFormatIdentifier 20 LFID

#3 maxNumberOfBlockLength [byte #1] (MSB) 00 MNROB_B1

#4 maxNumberOfBlockLength [byte #2] (LSB) 81 MNROB_B2

ISO 14229:2006(E)

248 © ISO 2006 – All rights reserved

14.5.5.2.2 Step #2 — Transfer data

Table 398 — TransferData request message flow example

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 TransferData request SID 36 TD

#2 blockSequenceCounter 01 BSC

Table 399 — TransferData positive response message flow example

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 TransferData response SID 76 TDPR

#2 blockSequenceCounter 01 BSC

#3

transferResponseParameterRecord [transferResponseParameter#1]
= dataByte3

xx

TREP_1

: : : :

#129 transferResponseParameterRecord
[transferResponseParameter#127] = dataByte129

xx TREP_127

Table 400 — TransferData request message flow example

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 TransferData request SID 36 TD

#2 blockSequenceCounter 05 BSC

Table 401 — TransferData positive response message flow example

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 TransferData response SID 76 TDPR

#2 blockSequenceCounter 05 BSC

#3

transferResponseParameterRecord [transferResponseParameter#1]
= dataByte3

xx

TREP_1

: : : :

#5 transferResponseParameterRecord [transferResponseParameter#3]
= dataByte5

xx TREP_5

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 249

14.5.5.2.3 Step #3 — Request Transfer exit

Table 402 — RequestTransferExit request message flow example

Message direction: client → server

Message type: Request

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RequestTransferExit request SID 37 RTE

Table 403 — RequestTransferExit positive response message flow example

Message direction: server → client

Message type: Response

A_Data byte Description (all values are in hexadecimal) Byte value (hex) Mnemonic

#1 RequestTransferExit response SID 77 RTEPR

ISO 14229:2006(E)

250 © ISO 2006 – All rights reserved

Annex A
(informative)

Global parameter definitions

A.1 Negative response codes

Table A.1 defines all negative response codes used within ISO 14229. Each diagnostic service specifies
applicable negative response codes but the diagnostic service implementation in the server may also utilise
additional and applicable negative response codes specified in this annex.

The negative response code range 00 – FF hex is divided into 3 ranges:

⎯ 00 hex: positiveResponse parameter value for server internal implementation;

⎯ 01 – 7F hex: communication related negative response codes;

⎯ 80 – FF hex: negative response codes for specific conditions that are not correct at the point in time the
request is received by the server. These response codes may be utilised whenever response code
22 hex (conditionsNotCorrect) is listed as valid in order to report more specifically why the requested
action can not be taken.

Table A.1 — Definition of responseCode values

Hex value responseCode Mnemonic

00 positiveResponse PR

 This response code shall not be used in a negative response message. This
positiveResponse parameter value is reserved for server-internal implementation.
Refer to 7.5.4 pseudo code example of server response behaviour.

01 - 0F ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

10 generalReject GR

 This response code indicates that the requested action has been rejected by the
server.

The generalReject response code shall only be implemented in the server if none of
the negative response codes defined in this document meet the needs of the
implementation. By no means shall this response code be a general replacement for
the response codes defined in ISO 14229.

11 serviceNotSupported SNS

 This response code indicates that the requested action will not be taken because the
server does not support the requested service.

The server shall send this response code in case the client has sent a request
message with a service identifier which is either unknown or not supported by the
server. Therefore, this negative response code is not shown in the list of negative
response codes to be supported for a diagnostic service because this negative
response code is not applicable for supported services.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 251

Table A.1 (continued)

Hex value responseCode Mnemonic

12 subFunctionNotSupported SFNS

 This response code indicates that the requested action will not be taken because the
server does not support the service-specific parameters of the request message.

The server shall send this response code if the client has sent a request message
with a known and supported service identifier but with “sub-function” which is either
unknown or not supported.

13 incorrectMessageLengthOrInvalidFormat IMLOIF

 This response code indicates that the requested action will not be taken because the
length of the received request message does not match the prescribed length for the
specified service or because the format of the parameters does not match the
prescribed format for the specified service.

14 responseTooLong RTL

 This response code shall be reported by the server if the response to be generated
exceeds the maximum number of bytes available by the underlying network layer.

EXAMPLE This problem may occur when several DIDs are requested at a time and the
combination of all DIDs in the response exceeds the limit of the underlying transport protocol.

15 - 20 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

21 busyRepeatRequest BRR

 This response code indicates that the server is temporarily too busy to perform the
requested operation. In this circumstance, the client shall perform repetition of the
“identical request message” or “another request message”. The repetition of the
request shall be delayed by a time specified in the respective implementation
documents.

EXAMPLE In a multi-client environment the diagnostic request of one client might be blocked
temporarily by a NRC $21 while a different client finishes a diagnostic task.

If the server is able to perform the diagnostic task but needs additional time to finish
the task and prepare the response, the NRC $78 shall be used instead of NRC $21.

This response code is, in general, supported by each diagnostic service, unless
otherwise stated in the data-link-specific implementation document; therefore, it is
not listed in the list of applicable response codes of the diagnostic services.

22 conditionsNotCorrect CNC

 This response code indicates that the requested action will not be taken because the
server prerequisite conditions are not met.

23 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

24 requestSequenceError RSE

 This response code indicates that the requested action will not be taken because the
server expects a different sequence of request messages or message to that sent by
the client. This may occur when sequence-sensitive requests are issued in the wrong
order.

EXAMPLE A successful SecurityAccess service specifies a sequence of requestSeed and
sendKey as sub-functions in the request messages. If the sequence is sent differently by the
client, the server shall send a negative response message with the negative response code
24 hex - requestSequenceError.

ISO 14229:2006(E)

252 © ISO 2006 – All rights reserved

Table A.1 (continued)

Hex value responseCode Mnemonic

25 noResponseFromSubnetComponent NRFSC

 This response code indicates that the server has received the request but the
requested action could not be performed by the server, as a subnet component
which is necessary to supply the requested information did not respond within the
specified time.

The noResponseFromSubnetComponent negative response shall be implemented
by gateways in electronic systems which contain electronic subnet components and
which do not directly respond to the client’s request. The gateway may receive the
request for the subnet component and then request the necessary information from
the subnet component. If the subnet component fails to respond, the server shall use
this negative response to inform the client about the failure of the subnet component.

This response code is, in general, supported by each diagnostic service, unless
otherwise stated in the data-link-specific implementation document; therefore, it is
not listed in the list of applicable response codes of the diagnostic services.

26 failurePreventsExecutionOfRequestedAction FPEORA

 This response code indicates that the requested action will not be taken because a
failure condition, identified by a DTC (with at least one DTC status bit for TestFailed,
Pending, Confirmed or TestFailedSinceLastClear set to 1), has occurred and that
this failure condition prevents the server from performing the requested action.

This NRC can, for example, direct the technician to read DTCs in order to identify
and fix the problem.

NOTE This implies that diagnostic services used to access DTCs shall not implement this
NRC, as an external test tool may check for the above NRC and automatically request DTCs
whenever the above NRC has been received.

This response code is, in general, supported by each diagnostic service (except the
services mentioned above), unless otherwise stated in the data-link-specific
implementation document; therefore, it is not listed in the list of applicable response
codes of the diagnostic services.

27 - 30 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

31 requestOutOfRange ROOR

 This response code indicates that the requested action will not be taken because the
server has detected that the request message contains a parameter which attempts
to substitute a value beyond its range of authority (e.g. attempting to substitute a
data byte of 111 when the data is only defined to 100), or which attempts to access a
dataIdentifier/routineIdentifer that is not supported or not supported in active session.

This response code shall be implemented for all services which allow the client to
read data, write data or adjust functions by data in the server.

32 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 253

Table A.1 (continued)

Hex value responseCode Mnemonic

33 securityAccessDenied SAD

 This response code indicates that the requested action will not be taken because the
server’s security strategy has not been satisfied by the client.

The server shall send this response code if one of the following cases occurs:
⎯ the test conditions of the server are not met;
⎯ the required message sequence, e.g. DiagnosticSessionControl,

securityAccess, is not met;
⎯ the client has sent a request message which requires an unlocked server.

Besides the mandatory use of this negative response code as specified in the
applicable services within ISO 14229, this negative response code can also be used
for any case where security is required and is not yet granted to perform the required
service.

34 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

35 invalidKey IK

 This response code indicates that the server has not given security access because
the key sent by the client did not match with the key in the server’s memory. This
counts as an attempt to gain security. The server shall remain locked and increment
its internal securityAccessFailed counter.

36 exceedNumberOfAttempts ENOA

 This response code indicates that the requested action will not be taken because the
client has unsuccessfully attempted to gain security access more times than the
server’s security strategy will allow.

37 requiredTimeDelayNotExpired RTDNE

 This response code indicates that the requested action will not be taken because the
client’s latest attempt to gain security access was initiated before the server’s
required timeout period had elapsed.

38 – 4F reservedByExtendedDataLinkSecurityDocument RBEDLSD

 This range of values is reserved by ISO 15764 Extended data link security.

50 – 6F ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition.

70 uploadDownloadNotAccepted UDNA

 This response code indicates that an attempt to upload/download to a server’s
memory cannot be accomplished due to fault conditions.

71 transferDataSuspended TDS

 This response code indicates that a data transfer operation was halted due to a fault.
The active transferData sequence shall be aborted.

72 generalProgrammingFailure GPF

 This response code indicates that the server detected an error when erasing or
programming a memory location in the permanent memory device (e.g. Flash
Memory).

73 wrongBlockSequenceCounter WBSC

 This response code indicates that the server detected an error in the sequence of
blockSequenceCounter values. Note that the repetition of a TransferData request
message with a blockSequenceCounter equal to the one included in the previous
TransferData request message shall be accepted by the server.

ISO 14229:2006(E)

254 © ISO 2006 – All rights reserved

Table A.1 (continued)

Hex value responseCode Mnemonic

74 - 77 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by this document for future definition.

78 requestCorrectlyReceived-ResponsePending RCRRP

 This response code indicates that the request message was received correctly, and
that all parameters in the request message were valid, but the action to be
performed is not yet completed and the server is not yet ready to receive another
request. As soon as the requested service has been completed, the server shall
send a positive response message or negative response message with a response
code different from this.

The negative response message with this response code may be repeated by the
server until the requested service is completed and the final response message is
sent. This response code might impact the application layer timing parameter values.
The detailed specification shall be included in the data-link-specific implementation
document.

This response code shall only be used in a negative response message if the server
will not be able to receive further request messages from the client while completing
the requested diagnostic service.

When this response code is used, the server shall always send a final response
(positive or negative) independently of the suppressPosRspMsgIndicationBit value.

A typical example of where this response code may be used is when the client has
sent a request message which includes data to be programmed or erased in flash
memory of the server. If the programming/erasing routine (usually executed out of
RAM) is not able to support serial communication while writing to the flash memory,
the server shall send a negative response message with this response code.

This response code is, in general, supported by each diagnostic service, unless
otherwise stated in the data-link-specific implementation document; therefore, it is
not listed in the list of applicable response codes of the diagnostic services.

79 – 7D ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

7E subFunctionNotSupportedInActiveSession SFNSIAS

 This response code indicates that the requested action will not be taken because the
server does not support the requested sub-function in the session currently active.
Within the programmingSession, negative response code SFNS
(subFunctionNotSupported) may optionally be reported instead of negative response
code SNFSIAS (subFunctionNotSupportedInActiveSession). This response code
shall only be used when the requested sub-function is known to be supported in
another session, otherwise response code SFNS (subFunctionNotSupported) shall
be used.

This response code shall be supported by each diagnostic service with a sub-
function parameter, if not otherwise stated in the data-link-specific implementation
document; therefore, it is not listed in the list of applicable response codes of the
diagnostic services.

7F serviceNotSupportedInActiveSession SNSIAS

 This response code indicates that the requested action will not be taken because the
server does not support the requested service in the session currently active. This
response code shall only be used when the requested service is known to be
supported in another session, otherwise response code SNS (serviceNotSupported)
shall be used.

This response code is, in general, supported by each diagnostic service, unless
otherwise stated in the data-link-specific implementation document; therefore, it is
not listed in the list of applicable response codes of the diagnostic services.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 255

Table A.1 (continued)

Hex value responseCode Mnemonic

80 ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

81 rpmTooHigh RPMTH

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for RPM is not met (current RPM is above a
preprogrammed maximum threshold).

82 rpmTooLow RPMTL

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for RPM is not met (current RPM is below a
preprogrammed minimum threshold).

83 engineIsRunning EIR

 This is required for those actuator tests which cannot be actuated while the engine is
running. This is different from the RPM too high negative response and needs to be
allowed.

84 engineIsNotRunning EINR

 This is required for those actuator tests which cannot be actuated unless the Engine
is running. This is different from the RPM too low negative response and shall be
allowed.

85 engineRunTimeTooLow ERTTL

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for engine run time is not met (current engine run time
is below a preprogrammed limit).

86 temperatureTooHigh TEMPTH

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for temperature is not met (current temperature is
above a preprogrammed maximum threshold).

87 temperatureTooLow TEMPTL

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for temperature is not met (current temperature is below
a preprogrammed minimum threshold).

88 vehicleSpeedTooHigh VSTH

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for vehicle speed is not met (current VS is above a
preprogrammed maximum threshold).

89 vehicleSpeedTooLow VSTL

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for vehicle speed is not met (current VS is below a
preprogrammed minimum threshold).

8A throttle/PedalTooHigh TPTH

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for throttle/pedal position is not met (current TP/APP is
above a preprogrammed maximum threshold).

8B throttle/PedalTooLow TPTL

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for throttle/pedal position is not met (current TP/APP is
below a preprogrammed minimum threshold).

ISO 14229:2006(E)

256 © ISO 2006 – All rights reserved

Table A.1 (continued)

Hex value responseCode Mnemonic

8C transmissionRangeNotInNeutral TRNIN

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for being in neutral is not met (current transmission
range is not in neutral).

8D transmissionRangeNotInGear TRNIG

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for being in gear is not met (current transmission range
is not in gear).

8E ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

8F brakeSwitch(es)NotClosed (brake pedal not pressed or not applied) BSNC

 For safety reasons, this is required before beginning certain tests, and must be
maintained for the entire duration of the test.

90 shifterLeverNotInPark SLNIP

 For safety reasons, this is required before beginning certain tests, and must be
maintained for the entire duration of the test.

91 torqueConverterClutchLocked TCCL

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for torque converter clutch is not met (current TCC
status is above a preprogrammed limit or locked).

92 voltageTooHigh VTH

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for voltage at the primary pin of the server (ECU) is not
met (current voltage is above a preprogrammed maximum threshold).

93 voltageTooLow VTL

 This response code indicates that the requested action will not be taken because the
server prerequisite condition for voltage at the primary pin of the server (ECU) is not
met (current voltage is below a preprogrammed maximum threshold).

94 - FE reservedForSpecificConditionsNotCorrect RFSCNC

 This range of values is reserved by ISO 14229 for future definition.

FF ISOSAEReserved ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 257

Annex B
(normative)

Diagnostic and communication management functional unit data

parameter definitions

B.1 communicationType parameter definition

The communicationType is a one-byte value. The bit-encoded low nibble of this byte represents the
communicationTypes, which can be controlled via the CommunicationControl (28 hex) service. For example, a
communicationType with a bit combination (Bits 1-0) of “11b” is valid and disables both
“normalCommunicationMessages” and “networkManagementCommunicationMessages” messages. The high
nibble of the communicationType one-byte value defines which of the subnets connected to the receiving
node shall be disabled/enabled when an appropriate CommunicationControl service is received.

Table B.1 — Definition of communicationType and subnetNumber byte

Encoding
of bit Value Description Cvt Mnemonic

0 ISOSAEReserved M ISOSAERESRVD

normalCommunicationMessages M NCM 1

This value references all application-related communication (inter-
application signal exchange between multiple in-vehicle servers).

networkManagementCommunicationMessages M NWMCM 2

This value references all network-management-related communication.

networkManagementCommunicationMessages and
normalCommunicationMessages

M

0 – 1

3

This value references all network management and application-related
communication.

2 – 3 0 - 3 ISOSAEReserved ISOSAERESRVD

0 Disable/Enable specified communicationType (see encoding of bit 0-1)
in the receiving node and all connected subnets

This only disables the node’s communication into the subnets but not the
communication of other nodes on the subnet (receiving node is not
responsible for disabling communication in each node of the subnet).

M

1 – E Disable/Enable specific subnet identified by subnet number U

4 – 7

F Disable/Enable network which request is received on
(receiving node (server))

U

ISO 14229:2006(E)

258 © ISO 2006 – All rights reserved

B.2 eventWindowTime parameter definition

Table B.2 — Definition of eventWindowTime parameter values

Hex Description Cvt Mnemonic

00 - 01 ISOSAEReserved M ISOSAERESRVD

 This value is reserved by ISO 14229.

02 infiniteTimeToResponse U ITTR

 This value specifies that the event window shall stay active for an infinite
amount of time (e.g. open window until power off).

03-7F vehicleManufacturerSpecific U VMS

 This range of values is reserved for vehicle-manufacturer-specific use.

The resolution of the eventWindowTime parameter is left vehicle-manufacturer-
discretionary.

80-FF ISOSAEReserved M ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

B.3 baudrateIdentifier parameter definition

Table B.3 — Definition of baudrateIdentifier values

Hex Description Cvt Mnemonic

00 ISOSAEReserved M ISOSAERESRVD

 This value is reserved by ISO 14229 for future definition.

01 PC9600Baud U PC9600

 This value specifies the standard PC baud rate of 9.6 KBaud.

02 PC19200Baud U PC19200

 This value specifies the standard PC baud rate of 19.2 KBaud.

03 PC38400Baud U PC38400

 This value specifies the standard PC baud rate of 38.4 KBaud.

04 PC57600Baud U PC57600

 This value specifies the standard PC baud rate of 57.6 KBaud.

05 PC115200Baud U PC115200

 This value specifies the standard PC baud rate of 115.2 KBaud.

06 – 0F ISOSAEReserved M ISOSAERESRVD

 This range of values is reserved by ISO 14229 for future definition.

10 CAN125000Baud U CAN125000

 This value specifies the standard CAN baud rate of 125 KBaud.

11 CAN250000Baud U CAN250000

 This value specifies the standard CAN baud rate of 250 KBaud.

12 CAN500000Baud U CAN500000

 This value specifies the standard CAN baud rate of 500 KBaud.

13 CAN1000000Baud U CAN1000000

 This value specifies the standard CAN baud rate of 1 MBaud.

14 - FF ISOSAEReserved M ISOSAERESRVD

 This range of values is reserved by this document for future definition.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 259

Annex C
(normative)

Data transmission functional unit data parameter definitions

C.1 dataIdentifier parameter definitions

The parameter dataIdentifier (DID) is intended to identify a server-specific local data record. This parameter
shall be available in the server’s memory. The dataIdentifier value shall either exist in fixed memory or be
temporarily stored in RAM if defined dynamically by the service dynamicallyDefineDataIdentifier. Values are
defined in Table C.1.

Table C.1 — dataIdentifier data parameter definitions

Hex Description Cvt Mnemonic

0000 - 00FF ISOSAEReserved M ISOSAERESRVD

 This range of values shall be reserved by ISO 14229 for future definition.

0100 - EFFF vehicleManufacturerSpecific U VMS

 This range of values shall be used to reference vehicle-manufacturer-specific
record data identifiers and input/output identifiers within the server.

F000 - F00F networkConfigurationDataForTractorTrailerApplicationDataIdentifier U NCDFTTADID

 This value shall be used to request the remote addresses of all trailer systems
independently of their functionality.

F010 - F0FF vehicleManufacturerSpecific U VMS

 This range of values shall be used to reference vehicle-manufacturer-specific
record data identifiers and input/output identifiers within the server.

F100 - F17F identificationOptionVehicleManufacturerSpecificDataIdentifier U IDOPTVMSDID

 This range of values shall be used for vehicle-manufacturer-specific
server/vehicle identification options.

F180 bootSoftwareIdentificationDataIdentifier U BSIDID

 This value shall be used to reference the vehicle-manufacturer-specific ECU
boot software identification record. The first data byte of the record data shall
be the numberOfModules that are reported. Following the numberOfModules,
the boot software identification(s) are reported. The format of the boot software
identification structure shall be ECU-specific and defined by the vehicle
manufacturer.

F181 applicationSoftwareIdentificationDataIdentifier U ASIDID

 This value shall be used to reference the vehicle-manufacturer-specific ECU
application software number(s). The first data byte of the record data shall be
the numberOfModules that are reported. Following the numberOfModules, the
application software identification(s) are reported. The format of the application
software identification structure shall be ECU-specific and defined by the
vehicle manufacturer.

ISO 14229:2006(E)

260 © ISO 2006 – All rights reserved

Table C.1 (continued)

Hex Description Cvt Mnemonic

F182 applicationDataIdentificationDataIdentifier U ADIDID

 This value shall be used to reference the vehicle-manufacturer-specific ECU
application data identification record. The first data byte of the record data shall
be the numberOfModules that are reported. Following the numberOfModules,
the application data identification(s) are reported. The format of the application
data identification structure shall be ECU-specific and defined by the vehicle
manufacturer.

F183 bootSoftwareFingerprintDataIdentifier U BSFPDID

 This value shall be used to reference the vehicle-manufacturer-specific ECU
boot software fingerprint identification record. Record data content and format
shall be ECU-specific and defined by the vehicle manufacturer.

F184 applicationSoftwareFingerprintDataIdentifier U ASFPDID

 This value shall be used to reference the vehicle-manufacturer-specific ECU
application software fingerprint identification record. Record data content and
format shall be ECU-specific and defined by the vehicle manufacturer.

F185 applicationDataFingerprintDataIdentifier U ADFPDID

 This value shall be used to reference the vehicle-manufacturer-specific ECU
application data fingerprint identification record. Record data content and
format shall be ECU-specific and defined by the vehicle manufacturer.

F186 activeDiagnosticSessionDataIdentifier U ADSDID

 This value shall be used to report the active diagnostic session in the server.
The values are defined by the diagnosticSessionType subfunction parameter in
the DiagnosticSessionControl service.

F187 vehicleManufacturerSparePartNumberDataIdentifier U VMSPNDID

 This value shall be used to reference the vehicle manufacturer spare part
number. Record data content and format shall be server-specific and defined
by the vehicle manufacturer.

F188 vehicleManufacturerECUSoftwareNumberDataIdentifier U VMECUSNDID

 This value shall be used to reference the vehicle manufacturer ECU (server)
software number. Record data content and format shall be server-specific and
defined by the vehicle manufacturer.

F189 vehicleManufacturerECUSoftwareVersionNumberDataIdentifier U VMECUSVNDID

 This value shall be used to reference the vehicle manufacturer ECU (server)
software version number. Record data content and format shall be server-
specific and defined by the vehicle manufacturer.

F18A systemSupplierIdentifierDataIdentifier U SSIDDID

 This value shall be used to reference the system supplier name and address
information. Record data content and format shall be server-specific and
defined by the system supplier.

F18B ECUManufacturingDateDataIdentifier U ECUMDDID

 This value shall be used to reference the ECU (server) manufacturing date.
Record data content and format shall be unsigned numeric, ASCII or BCD, and
shall be ordered as Year, Month, Day.

F18C ECUSerialNumberDataIdentifier U ECUSNDID

 This value shall be used to reference the ECU (server) serial number. Record
data content and format shall be server-specific.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 261

Table C.1 (continued)

Hex Description Cvt Mnemonic

F18D supportedFunctionalUnitsDataIdentifier U SFUDID

 This value shall be used to request the functional units implemented in a
server.

F18E vehicleManufacturerKitAssemblyPartNumberDataIdentifier U VMKAPNDID

 This value shall be used to reference the vehicle manufacturer order number
for a kit (assembled parts bought as a whole for production, e.g. cockpit), when
the spare part number designates only the server (e.g. for after sales). The
record data content and format shall be server-specific and defined by the
vehicle manufacturer.

F18F ISOSAEReservedStandardized M ISOSAERESRVD

 This range of values shall be reserved by ISO 14229 for future definition of
standardized server/vehicleIdentification options.

F190 VINDataIdentifier U VINDID

 This value shall be used to reference the VIN number. Record data content and
format shall be specified by the vehicle manufacturer.

F191 vehicleManufacturerECUHardwareNumberDataIdentifier U VMECUHNDID

 This value shall be used by reading services to reference the
vehicle-manufacturer-specific ECU (server) hardware number. Record data
content and format shall be server-specific and defined by vehicle
manufacturer.

F192 systemSupplierECUHardwareNumberDataIdentifier U SSECUHWNDID

 This value shall be used to reference the system-supplier-specific ECU (server)
hardware number. Record data content and format shall be server-specific and
defined by the system supplier.

F193 systemSupplierECUHardwareVersionNumberDataIdentifier U SSECUHWVNDID

 This value shall be used to reference the system-supplier-specific ECU (server)
hardware version number. Record data content and format shall be
server-specific and defined by the system supplier.

F194 systemSupplierECUSoftwareNumberDataIdentifier U SSECUSWNDID

 This value shall be used to reference the system-supplier-specific ECU (server)
software number. Record data content and format shall be server-specific and
defined by the system supplier.

F195 systemSupplierECUSoftwareVersionNumberDataIdentifier U SSECUSWVNDID

 This value shall be used to reference the system-supplier-specific ECU (server)
software version number. Record data content and format shall be
server-specific and defined by the system supplier.

F196 exhaustRegulationOrTypeApprovalNumberDataIdentifier U EROTANDID

 This value shall be used to reference the exhaust regulation or type approval
number (valid for those systems which require type approval). Record data
content and format shall be server-specific and defined by the vehicle
manufacturer.

F197 systemNameOrEngineTypeDataIdentifier U SNOETDID

 This value shall be used to reference the system name or engine type. Record
data content and format shall be server-specific and defined by the vehicle
manufacturer.

ISO 14229:2006(E)

262 © ISO 2006 – All rights reserved

Table C.1 (continued)

Hex Description Cvt Mnemonic

F198 repairShopCodeOrTesterSerialNumberDataIdentifier U RSCOTSNDID

 This value shall be used to reference the repair shop code or tester (client)
serial number (e.g. to indicate the most recent service client used reprogram
server memory). Record data content and format shall be server-specific and
defined by the vehicle manufacturer.

F199 programmingDateDataIdentifier U PDDID

 This value shall be used to reference the date when the server was last
programmed. Record data content and format shall be unsigned numeric,
ASCII or BCD, and shall be ordered as Year, Month, Day.

F19A calibrationRepairShopCodeOrCalibrationEquipmentSerialNumberData-
Identifier

U CRSCOCESNDID

 This value shall be used to reference the repair shop code or client serial
number (e.g. to indicate the most recent service client used recalibrate the
server). Record data content and format shall be server-specific and defined by
the vehicle manufacturer.

F19B calibrationDateDataIdentifier U CDDID

 This value shall be used to reference the date when the server was last
calibrated. Record data content and format shall be unsigned numeric, ASCII or
BCD, and shall be ordered as Year, Month, Day.

F19C calibrationEquipmentSoftwareNumberDataIdentifier U CESWNDID

 This value shall be used to reference the software version within the client used
to calibrate the server. Record data content and format shall be server-specific
and defined by the vehicle manufacturer.

F19D ECUInstallationDateDataIdentifier U EIDDID

 This value shall be used to reference the date when the ECU (server) was
installed in the vehicle. Record data content and format shall be either unsigned
numeric, ASCII or BCD, and shall be ordered as Year, Month, Day.

F19E ODXFileDataIdentifier U ODXFDID

 This value shall be used to reference the ODX (Open Diagnostic Data
Exchange) file of the server to be used to interpret and scale the server data.

F19F entityDataIdentifier U EDID

 This value shall be used to reference the entity data identifier as defined in
ISO 15764 for a secured data transmission.

F1A0 - F1EF identificationOptionVehicleManufacturerSpecific U IDOPTVMS

 This range of values shall be used for vehicle-manufacturer-specific
server/vehicle identification options.

F1F0 - F1FF identificationOptionSystemSupplierSpecific U IDOPTSSS

 This range of values shall be used for system-supplier-specific server/vehicle
system identification options.

F200 – F2FF periodicDataIdentifier U PDID

 This range of values shall be used to reference periodic record data identifiers.
These can be either statically or dynamically defined.

F300 – F3FF dynamicallyDefinedDataIdentifier U DDDDI

 This range of values shall be used for dynamicallyDefinedDataIdentifiers.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 263

Table C.1 (continued)

Hex Description Cvt Mnemonic

F400 – F4FF OBDDataIdentifier U OBDDID

 This range of values is reserved for OBD/EOBD PIDs as defined in
ISO 15031-5.

F500 – F5FF OBDDataIdentifier U OBDDID

 This range of values is reserved to represent future OBD/EOBD PIDs.

F600 – F6FF OBDMonitorDataIdentifier U OBDMDID

 This range of values is reserved for OBD/EOBD on-board monitoring result
values as defined in ISO 15031-5.

F700 – F7FF OBDMonitorDataIdentifier U OBDMDID

 This range of values is reserved to represent future OBD/EOBD on-board
monitoring result values.

F800 – F8FF OBDInfoTypeDataIdentifier U OBDINFTYPDID

 This range of values is reserved for OBD/EOBD info type values as defined in
ISO 15031-5.

F900 – F9FF TachographDataIdentifier U TACHODID

 This range of values is reserved for tachograph PIDs as defined in
ISO 16844-7.

FA00 – FA0F AirbagDeploymentDataIdentifier U ADDID

 This range of values is reserved to represent safety-system-related airbag
deployment DIDs.

FA10 - FAFF SafetySystemDataIdentifier U SSDID

 This range of values is reserved to represent safety-system-related DIDs.

FB00 - FCFF ReservedForLegislativeUse U RFLU

 This range of values is reserved for future legislative requirements.

FD00 - FEFF SystemSupplierSpecific U SSS

 This range of values shall be used to reference system-supplier-specific record
data identifiers and input/output identifiers within the server.

FF00 - FFFF ISOSAEReserved M ISOSAERESRVD

 This range of values shall be reserved by ISO 14229 for future definition.

C.2 scalingByte parameter definitions

The parameter scalingByte (SBYT) consists of one byte (high and low nibble). The scalingByte high nibble
defines the data type, which is used to represent the dataIdentifier (DID). The scalingByte low nibble defines
the number of bytes used to represent the parameter in a datastream.

ISO 14229:2006(E)

264 © ISO 2006 – All rights reserved

Table C.2 — scalingByte (high nibble) parameter definitions

Encoding of
high nibble

(hex)
Description of data type Cvt Mnemonic

0 unSignedNumeric (1 to 4 bytes) U USN
 This encoding uses a common binary weighting scheme to represent a value by

means of discrete incremental steps. One byte affords 256 steps; two bytes yields
65536 steps, etc.

1 signedNumeric (1 to 4 bytes) U SN
 This encoding uses a two's complement binary weighting scheme to represent a

value by means of discrete incremental steps. One byte affords 256 steps; two
bytes yields 65536 steps, etc.

2 bitMappedReportedWithOutMask U BMRWOM
 Bit-mapped encoding uses individual bits or small groups of bits to represent

status. For every bit which represents status, a corresponding mask bit is
required as part of the parameter definition. The mask indicates the validity of the
bit for particular applications. This type of bit-mapped parameter does not contain
additional bytes to report the validity mask.

3 bitMappedReportedWithMask U BMRWM
 Bit-mapped encoding uses individual bits or small groups of bits to represent

status. For every bit which represents status, a corresponding mask bit is
required as part of the parameter definition. The mask indicates the validity of the
bit for particular applications. This type of bit-mapped parameter contains one
validity mask byte for each status byte representing data.

4 BinaryCodedDecimal U BCD
 Conventional binary coded decimal encoding is used to represent two numeric

digits per byte. The upper nibble is used to represent the most significant digit
(0 - 9), and the lower nibble the least significant digit (0 - 9).

5 stateEncodedVariable (1 byte) U SEV
 This encoding uses a binary weighting scheme to represent up to 256 distinct

states. An example is a parameter which represents the status of the ignition
switch. Codes “00”, “01”, “02” and “03” may indicate ignition off, locked, run and
start, respectively. The representation is always limited to one (1) byte.

6 ASCII (1 to 15 bytes for each scalingByte) U ASCII
 Conventional ASCII encoding is used to represent up to 128 standard characters

with the MSB = logic 0. An additional 128 custom characters may be represented
with the MSB = logic 1.

7 signedFloatingPoint U SFP
 Floating point encoding is used for data that needs to be represented in floating

point or scientific notation. Standard IEEE formats shall be used according to
ANSI/IEEE Std 754.

8 packet U P
 Packets contain multiple data values, usually related, each with unique scaling.

Scaling information is not included for the individual values. Refer to C.3.1
XscalingByteExtension for scalingByte high nibble of
bitMappedReportedWithOutMask.

9 formula U F
 A formula is used to calculate a value from the raw data. Formula identifiers are

specified in Table C.6. Refer to C.3.2 scalingByteExtension for scalingByte high
nibble of formula.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 265

Table C.2 (continued)

Encoding of
high nibble

(hex)
Description of data type Cvt Mnemonic

A unit/format U U
 The units and formats are used to present the data in a more user-friendly format.

Unit and format identifiers are specified in Table C.6.
If combined units and/or formats are used, e.g. mV, then one scalingByte (and
scalingData) for each unit/format shall be included in the
readScalingDataByIdentifier positive response. Refer to C.3.3
scalingByteExtension for scalingByte high nibble of unit/format.

B stateAndConnectionType (1 byte) U SACT
 This encoding is used especially for input and output signals. The information

encoded in the data byte specifies the high level physical layout, electrical levels
and functional state. It is recommended to use this option for digital input and
output parameters. Refer to C.3.4 scalingByteExtension for scalingByte high
nibble of stateAndConnectionType.

C - F ISOSAEReserved M ISOSAERESRVD
 Reserved by ISO 14229 for future definition.

Table C.3 — scalingByte (low nibble) parameter definitions

Encoding of
low nibble

(hex)
Description of low nibble Cvt Mnemonic

0 - F numberOfBytesOfParameter U NROBOP

 This range of values specifies the number of data bytes in a data stream
referenced by a parameter identifier. The length of a parameter is defined by the
scaling byte(s), which is/are always preceded by a parameter identifier (one or
multiple bytes). If multiple scaling bytes follow a parameter identifier, the length of
the data referenced by the parameter identifier is the summation of the content of
the low nibbles in the scaling bytes.

e.g. VIN is identified by a single-byte parameter identifier and followed by two
scaling bytes. The length is calculated up to 17 data bytes. The content of the
two low nibbles may have any combination of values that add up to 17 data
bytes.

NOTE For a scalingByte with high nibble encoded as formula or unit/format this
value is $0.

C.3 scalingByteExtension parameter definitions

C.3.1 scalingByteExtension for scalingByte high nibble of bitMappedReportedWithOutMask

The parameter scalingByteExtension (SBYE) is only supported for scalingByte parameters with the high
nibble encoded as formula, unit/format or bitMappedReportedWithOutMask.

A scalingByte with high nibble encoded as bitMappedReportedWithOutMask shall be followed by
scalingByteExtension bytes representing the validity mask for the bit-mapped dataIdentifier. Each byte shall
indicate which bits of the corresponding dataIdentifier byte are supported for the current application.

ISO 14229:2006(E)

266 © ISO 2006 – All rights reserved

Table C.4 — scalingByteExtension for bitMappedReportedWithOutMask

ScalingByteExtension
byte Description Cvt

#1 dataIdentifier dataRecord#1 validity mask M

: : C1
a

#p dataIdentifier dataRecord#p validity mask C1

a The presence of the C1 parameter depends on the size of the dataIdentifier for which the information is being requested. The
validity mask shall have as many bytes as the dataIdentifier has dataRecords.

C.3.2 scalingByteExtension for scalingByte high nibble of formula

The parameter scalingByteExtension (SBYE) is only supported for scalingByte parameters with the high
nibble encoded as formula, unit/format or bitMappedReportedWithOutMask.

A scalingByte with high nibble encoded as formula shall be followed by scalingByteExtension bytes defining
the formula. The scalingByteExtension consists of a one-byte formulaIdentifier and constants as described in
the table below.

Table C.5 — scalingByteExtension Bytes for formula

ScalingByteExtension
byte Description Cvt

#1 formulaIdentifier (refer to Table C.6) M

#2 C0 high byte M

#3 C0 low byte M

#4 C1 high byte U

#5 C1 low byte U

: : U

#2n+2 Cn high byte U

#2n+3 Cn low byte U

Table C.6 — formulaIdentifier encoding

FormulaIdentifier (hex) Description Cvt

00 y = C0 * x + C1 U

01 y = C0 * (x + C1) U

02 y = C0/(x + C1) + C2 U

03 y = x/C0 + C1 U

04 y = (x + C0)/C1 U

05 y = (x + C0)/C1 + C2 U

06 y = C0 * x U

07 y = x/C0 U

08 y = x + C0 U

09 y = x * C0/C1 U

0A - 7F ISO/SAE reserved M

80 – FF Vehicle-manufacturer-specific U

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 267

Formulas are defined using variables (y, x, etc.) and constants (C0, C1, C2, etc.). The variable y is the
calculated value. The other variables, in consecutive order, are part of the data stream referenced by a
dataIdentifier. Each constant is expressed as a two-byte real number defined in Table C.7. The two-byte real
numbers (C = M * 10E) contain a 12-bit signed (2's complement) mantissa (M) and a four-bit signed (2's
complement) exponent (E). The mantissa can hold values within the range –2048 to +2047 and the exponent
can scale the number by 10-8 to 107. The exponent is encoded in the high nibble of the high byte of the
two-byte real number. The mantissa is encoded in the low nibble of the high byte and the complete low byte of
the two-byte real number.

Table C.7 — Two-byte real number format

High byte Low byte

High nibble Low nibble High nibble Low nibble

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Exponent Mantissa

C.3.3 scalingByteExtension for scalingByte high nibble of unit/format

The parameter scalingByteExtension (SBYE) is only supported for scalingByte parameters with the high
nibble encoded as formula, unit/format or bitMappedReportedWithOutMask.

A scalingByte with high nibble encoded as unit/format shall be followed by a single scalingByteExtension byte
defining the unit/format. The one-byte scalingByteExtension is defined in Table C.8. If combined units and/or
formats are used, e.g. mV, then one scalingByte (and scalingByteExtension) shall be included for each
unit/format.

Table C.8 — Unit/format scalingByteExtension encoding

ScalingByteExtension
byte #1 (hex) Name Symbol Description Cvt

00 no unit, no prefix U
01 meter m length U
02 foot ft length U
03 inch in length U
04 yard yd length U
05 mile (English) mi length U
06 gram g mass U
07 ton (metric) t mass U
08 second s time U
09 minute min time U
0A hour h time U
0B day d time U
0C year y time U
0D ampere A current U
0E volt V voltage U
0F coulomb C electric charge U
10 ohm W resistance U
11 farad F capacitance U
12 henry H inductance U
13 siemens S electric conductance U

ISO 14229:2006(E)

268 © ISO 2006 – All rights reserved

Table C.8 (continued)

ScalingByteExtension
byte #1 (hex) Name Symbol Description Cvt

14 weber Wb magnetic flux U
15 tesla T magnetic flux density U
16 kelvin K thermodynamic temperature U
17 Celsius °C thermodynamic temperature U
18 Fahrenheit °F thermodynamic temperature U
19 candela cd luminous intensity U
1A radian rad plane angle U
1B degree ° plane angle U
1C hertz Hz frequency U
1D joule J energy U
1E Newton N force U
1F kilopond kp force U
20 pound force lbf force U
21 watt W power U
22 horse power (metric) hk power U
23 horse power (UK and US) hp power U
24 Pascal Pa pressure U
25 bar bar pressure U
26 atmosphere atm pressure U
27 pound force per square inch psi pressure U

28 becqerel Bq radioactivity U
29 lumen lm light flux U
2A lux lx illuminance U
2B liter l volume U
2C gallon (British) — volume U
2D gallon (US liq) — volume U
2E cubic inch cu in volume U
2F meter per second m/s speed U
30 kilometre per hour km/h speed U
31 mile per hour mph speed U
32 revolutions per second rps angular velocity U
33 revolutions per minute rpm angular velocity U
34 counts — — U
35 percent % — U
36 milligram per stroke mg/stroke mass per engine stroke U
37 meter per square second m/s2

 acceleration U
38 Newton meter Nm moment (e.g. torsion moment) U
39 liter per minute l/min flow U
3A watt per square meter W/m2

 intensity U

3B bar per second bar/s pressure change U

3C radians per second rad/s angular velocity U
3D radians per square second rad/s2

 angular acceleration U
3E kilogram per square meter kg/m2

 — U
3F — — reserved by document M

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 269

Table C.8 (continued)

ScalingByteExtension
byte #1 (hex) Name Symbol Description Cvt

40 exa (prefix) E 1018 U
41 peta (prefix) P 1015 U
42 tera (prefix) T 1012 U
43 giga (prefix) G 109 U
44 mega (prefix) M 106 U
45 kilo (prefix) k 103 U
46 hecto (prefix) h 102 U
47 deca (prefix) da 10 U
48 deci (prefix) d 10-1 U
49 centi (prefix) c 10-2 U
4A milli (prefix) m 10-3 U
4B micro (prefix) m 10-6 U

4C nano (prefix) n 10-9 U

4D pico (prefix) p 10-12 U

4E femto (prefix) f 10-15 U

4F atto (prefix) a 10-18 U

50 Date1 — Year-Month-Day U

51 Date2 — Day/Month/Year U

52 Date3 — Month/Day/Year U

53 week W calendar week U

54 Time1 — UTC Hour/Minute/Second U

55 Time2 — Hour/Minute/Second U

56 DateAndTime1 — Second/Minute/Hour/Day/Month/
Year U

57 DateAndTime2 —
Second/Minute/Hour/Day/Month/
Year/Local minute offset/Local
hour offset

U

58 DateAndTime3 — Second/Minute/Hour/Month/Day/
Year U

59 DateAndTime4 —
Second/Minute/Hour/Month/Day/
Year/Local minute offset/Local
hour offset

U

5A-FF — — ISO/SAE reserved M

ISO 14229:2006(E)

270 © ISO 2006 – All rights reserved

C.3.4 scalingByteExtension for scalingByte high nibble of stateAndConnectionType

A scalingByte with high nibble encoded as stateAndConnectionType shall be followed by a single
scalingByteExtension byte defining the stateAndConnectionType. The one-byte scalingByteExtension is
defined in Table C.9. The stateAndConnectionType encoding is used specially for input and output signals.
Encoded in the scalingByteExtension data byte is information about the physical layout, electrical levels and
functional state.

Table C.9 — Encoding of scalingByte high nibble of stateAndConnectionType

Encoding
of bit Value Used with input signals Used with output signals

0 State: Not Active State: Not Activated

1 State: Active, function 1 State: Active, function 1

2 State: Error detected State: Plausibility error detected

3 State: Not available State: Not available

4 State: Active, function 2 (only in combination with 3
states)

State: Active, function 2 (only in combination
with 3 states)

0 – 2

5 – 7 Reserved Reserved

0 Signal at low level (ground) Signal at low level (ground)

1 Signal at middle level (between ground and +) Signal at middle level (between ground and +)

2 Signal at high level (+) Signal at high level (+)
3 – 4

3 Reserved by ISO 14229 Reserved by ISO 14229

0 Input signal Not defined
5

1 Not defined Output signal

0 Internal signal or via CAN not exclusively available
in ECU connector

Internal signal or via CAN not exclusively
available in ECU connector

1 Pull-down resistor input type (2 states) Low side switch (2 states)

2 Pull-up resistor input type (2 states) High side switch (2 states)
6 – 7

3 Pull-up and pull-down resistor input type (3 states) Low side and high side switch (3 states)

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 271

C.4 transmissionMode parameter definitions

Table C.10 — transmissionMode parameter definitions

Hex Description Cvt Mnemonic

00 ISOSAEReserved M ISOSAERESRVD

 This value shall be reserved by ISO 14229 for future definition.

01 sendAtSlowRate U SASR

 This parameter specifies that the server shall transmit the requested dataRecord
information at a slow rate in response to the request message (where the number of
responses to be sent equals maximumNumberOfResponsesToSend). The repetition
rate specified by the transmissionMode parameter “slow” is vehicle-manufacturer-
specific and predefined in the server.

02 sendAtMediumRate U SAMR

 This parameter specifies that the server shall transmit the requested dataRecord
information at a medium rate in response to the request message (where the
number of responses to be sent equals maximumNumberOfResponsesToSend).
The repetition rate specified by the transmissionMode parameter “medium” is
vehicle-manufacturer specific and predefined in the server.

03 sendAtFastRate U SAFR

 This parameter specifies that the server shall transmit the requested dataRecord
information at a fast rate in response to the request message (where the number of
responses to be sent equals maximumNumberOfResponsesToSend). The repetition
rate specified by the transmissionMode parameter “fast” is vehicle-manufacturer-
specific and predefined in the server.

04 stopSending Ca SS

 The server stops transmitting positive response messages send
periodically/repeatedly. Note that the maximumNumberOfResponsesToSend
parameter should be set to 01 hex if transmissionMode = stopSending (otherwise,
server operation could be undefined).

05 – FF ISOSAEReserved M ISOSAERESRVD

 This value shall be reserved by ISO 14229 for future definition.

a C stopSending shall be supported if sendAtSlowRate, sendAtMediumRate and/or sendAtFastRate are supported.

ISO 14229:2006(E)

272 © ISO 2006 – All rights reserved

Annex D
(normative)

Stored data transmission functional unit data parameter definitions

D.1 groupOfDTC parameter definition

Table D.1 provides group of DTC definitions.

Table D.1 — Definition of groupOfDTC and range of DTC numbers

Hex Description Cvt Mnemonic

000000 Emissions-related systems Ca ERS

Powertrain Group: engine and transmission U PG

Powertrain DTCs U PDTC_

Chassis Group U CG

Chassis DTCs U CDTC_

Body Group U BG

Body DTCs U BDTC_

Network Communication Group U NCG

to
be

determined
by

vehicle
manufacturer

Network Communication DTCs U NCDTC_

FFFFFF All Groups (all DTCs) M AG

a C = Conditional: this parameter selects the emissions-related systems.

D.2 DTCStatusMask and statusOfDTC bit definitions

D.2.1 Convention and definition

This subclause defines the mapping of the DTCStatusMask/statusOfDTC parameters used with the
ReadDTCInformation service. Every server shall adhere to the convention for storing bit-packed DTC status
information as defined in the tables below. Actual usage of the bitfields shall be defined in the implementation
standards.

The following is a list of definitions used for the description of the DTC status bit definitions.

⎯ Test: A test is an on-board diagnostic software algorithm that determines the malfunction status of a
component or system. Some tests run only once during an operation cycle. Other tests can run every
program loop, as often as every few milliseconds. The result of a test represents a completely
matured/qualified failure condition. This means that a test which needs a failing condition over a specific
time or evaluation of additional plausibility checks before a component is considered to be failing will
return a “Failed” condition after all maturation criteria have been fulfilled. Each test is associated with a
unique DTC representing the root failure and detectable fault symptom.

⎯ Complete: Complete is an indication that a test was able to determine whether a malfunction exists or
does not exist for the current operation cycle (complete does not imply failed).

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 273

⎯ Test results: While a test runs or after it has been completed, it may indicate one of the following results
to the internal failure handler.

⎯ PreFailed: This status may be used by tests in ECUs to indicate that the test is currently maturing a
failure condition. One use case for this information is in manufacturing to speed up failure detection
for optimized workflow while maintaining fault tolerance in the field.

⎯ Failed: This status is available after a monitor has run to its completion and indicates a completely
matured failing condition.

⎯ Passed: This status is available after a monitor has run to its completion and indicates that the
system or component is not failing.

⎯ Failure: A failure is the inability of a component or system to meet its intended function. A failure has
occurred when fault conditions have been detected for a sufficient period of time to warrant storage of a
pending (for emissions-related components only) or confirmed DTC implying that a test returned a
“Failed” result. The terms “failure” and “malfunction” are interchangeable.

⎯ Monitor: A monitor consists of one or more tests used to determine the proper functioning of a
component or system.

⎯ Monitoring cycle: A monitoring cycle is the time in which a monitor runs to its completeness. This is a
manufacturer-defined set of conditions during which the tests of a monitor can run. A monitoring cycle
may be executed several times during an operation cycle.

⎯ Operation cycle: An operation cycle defines the start and end conditions for monitors to run. During an
operation cycle, several monitoring cycles may have passed (regardless of their test results). An ECU
may support several operation cycles. For body and chassis ECUs, it is up to the manufacturer to define
an operation cycle (e.g. time between powering up and powering down the ECU or between ignition on
and ignition off). For powertrain ECUs, there are additional criteria defining an operation cycle. Emissions-
related powertrain ECUs use an engine-running or engine-off time period to define an operation cycle,
which is referred to as driving cycle.

NOTE For emissions-related monitors, the criteria for the beginning and the end of an operation cycle are defined
by legislation.

⎯ Pending: The pending status of a failure is defined as a Test Result having reported a “Failed” status for
this failure during the current and/or the last completed operation cycle. Once the test has reported a
“Passed” condition for a complete operation cycle of this failure, the pending status is reset.

⎯ Driving cycle: A specific type of operation cycle used for emissions-related ECUs. Refer to “Operation
cycle” for further details. In emissions-related ECUs, only one operation cycle shall be supported which is
identical to the driving cycle as defined by legislation.

ISO 14229:2006(E)

274 © ISO 2006 – All rights reserved

D.2.2 Pseudocode data dictionary

The pseudocode data dictionary defines variables used in the pseudocode definition for each statusOfDTC bit.

Table D.2 — Pseudocode data dictionary

Variable Description

initializationFlag_TF
initializationFlag_TFTOC
initializationFlag_PDTC
initializationFlag_CDTC
initializationFlag_TNCSLC
initializationFlag_TFSLC
initializationFlag_TNCTOC
initializationFlag_WIR

Flags are used within the following pseudocode to ensure that the DTC status bit
initialization operations are only performed once. At a minimum, it is expected that the flags
are defaulted to a value of FALSE prior to the first power-up of the ECU. The variables shall
remain latched at TRUE until ECU software is reset or any other such vehicle manufacturer
specific reset is performed.

FALSE = initialization not performed;

TRUE = initialization performed.

lastOperationCycle Storage variable used to record the most recently completed operation cycle. A value shall
be assigned to the variable during the respective initialization phase of operation given in
the following pseudocode.

currentOperationCycle Storage variable used to record the current operation cycle. Updated continuously outside
the scope of the DTC status bit logic.

failedOperationCycle Storage variable used to record the most recently failed operation cycle. A value shall be
assigned to the variable during the respective initialization phase of operation given in the
following pseudocode.

confirmStage Storage variable used to record the stage of operation of the confirmedDTC status bit
pseudocode.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 275

Table D.3 — DTC status bit 0 testFailed definitions

Bit Description Cvt:
emission

CVT:
non-

emission
Mnemonic

0 testFailed U U TF

 This bit shall indicate the result of the most recently performed test. A logical ‘1’ shall indicate that the last test
failed meaning that the failure is completely matured. Reset to logical ‘0’ if the result of the most recently
performed test returns a “pass” result meaning that all de-mature criteria have been fulfilled. Additional reset
conditions may be defined by the vehicle manufacturer/implementation

Bit state after a successful ClearDiagnosticInformation service logical ‘0’

Reset to logical ‘0’ if a call has been made to ClearDiagnosticInformation.

Bit state definition Test Equipment Display Text

‘0’ = most recent result from DTC test indicated no failure detected (or test
has not completed this operation cycle).

DTC test is not failed at time of
request

‘1’ = most recent result from DTC test indicated a matured failing result. DTC test failed at time of request
Pseudocode Operation

1. IF (initializationFlag_TF = FALSE)
2. Set initializationFlag_TF = TRUE
3. Set testFailed = 0
4. IF (testFailed = 0)
5. IF ((most recent test result = FAILED) AND

 (ClearDiagnosticInformation requested = FALSE))
6. Set testFailed = 1
7. ELSE
8. Set testFailed = 0
9. IF (testFailed = 1)
10. IF ((most recent test result = PASSED) OR

 (ClearDiagnosticInformation requested = TRUE) OR
 (vehicle manufacturer/implementation reset conditions satisfied)

11. Set testFailed = 0
12. ELSE

13. Set testFailed = 1

Figure D.1 — DTC status bit 0 testFailed logic

ISO 14229:2006(E)

276 © ISO 2006 – All rights reserved

Table D.4 — DTC status bit 1 testFailedThisOperationCycle definitions

Bit Description Cvt:
emission

CVT:
non-

emission
Mnemonic

1 testFailedThisOperationCycle M C1 TFTOC

 This bit shall indicate whether or not a diagnostic test has reported a testFailed result at any time during the
current operation cycle (or that a testFailed result has been reported during the current operation cycle and after
the last time a call was made to ClearDiagnosticInformation). Reset to logical ‘0’ when a new operation cycle is
initiated or after a call to ClearDiagnosticInformation.

If this bit is set to logical ‘1’, it shall remain a ‘1’ until a new operation cycle is started.

Bit state after a successful ClearDiagnosticInformation service logical ‘0’

Reset to a logical ‘0’ after a call to ClearDiagnosticInformation.

Bit state definition Test Equipment Display Text

‘0’ = testFailed: result has not been reported during the current operation
cycle or after a call was made to ClearDiagnosticInformation during the
current operation cycle.

DTC test has not failed this
operation cycle

‘1’ = testFailed: result was reported at least once during the current
operation cycle.

DTC test failed this operation cycle

 C1: Bit 1 (testFailedThisOperationCycle) is mandatory if bit 2 (pendingDTC) is supported. Bit 1
(testFailedThisOperationCycle) is user optional if bit 2 (pendingDTC) is not supported.
Pseudocode Operation

1. IF (initializationFlag_TFTOC = FALSE)
2. Set initializationFlag_TFTOC = TRUE
3. Set testFailedThisOperationCycle = 0
4. Set lastOperationCycle = currentOperationCycle
5. IF ((currentOperationCycle != lastOperationCycle) OR

 (ClearDiagnosticInformation requested = TRUE)
6. Set lastOperationCycle = currentOperationCycle
7. Set testFailedThisOperationCycle = 0
8. ELSE IF ((most recent test result = FAILED) AND

 (ClearDiagnosticInformation requested = FALSE))

9. Set testFailedThisOperationCycle = 1

Figure D.2 — DTC status bit 1 testFailedThisOperationCycle logic

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 277

Table D.5 — DTC status bit 2 pendingDTC definitions

Bit Description Cvt:
emission

CVT:
non-

emission
Mnemonic

2 pendingDTC M U PDTC

 This bit shall indicate whether or not a diagnostic test has reported a testFailed result at any time during the
current or last completed operation cycle. The status shall only be updated if the test runs and completes. The
criteria to set the pendingDTC bit and the testFailedThisOperationCycle bit are the same. The difference is that
the testFailedThisOperationCycle is cleared at the end of the current operation cycle and the pendingDTC bit is
not cleared until an operation cycle has been completed where the test has passed at least once and never
failed.

If the test was not completed during the current operation cycle, the status bit shall not be changed. For
example, if a monitor stops running after a confirmed DTC is set, the pendingDTC must remain set = ‘1’. For an
OBD DTC, a pending DTC is required to be stored after a malfunction is detected during the first driving cycle.

Bit state after a successful ClearDiagnosticInformation service logical ‘0’

Reset to a logical ‘0’ after a call to ClearDiagnosticInformation.

Bit state definition Test Equipment Display Text

‘0’ = This bit shall be set to 0 after completing an operation cycle during
which the test was completed and a malfunction was not detected or upon a
call to the ClearDiagnosticInformation service.

DTC test has not failed during the
current or last completed
operation cycle

‘1’ = This bit shall be set to 1 and latched if a malfunction is detected during
the current operation cycle.

DTC test failed during the current
or last completed operation cycle

Pseudocode Operation
1. IF (initializationFlag_PDTC = FALSE)
2. Set initializationFlag_PDTC = TRUE
3. Set pendingDTC = 0
4. Set failedOperationCycle = currentOperationCycle
5. IF (ClearDiagnosticInformation requested = TRUE)
6. Set pendingDTC = 0
7. ELSE IF ((most recent test result = FAILED) AND

 (ClearDiagnosticInformation requested = FALSE))
8. Set pendingDTC = 1
9. Set failedOperationCycle = currentOperationCycle
10. ELSE IF ((most recent test result = PASSED) AND (not

TestFailedThisOperationCycle)) AND (not TestFailedLastOperationCycle))

11. Set pendingDTC = 0

Figure D.3 — DTC status bit 2 pendingDTC logic

ISO 14229:2006(E)

278 © ISO 2006 – All rights reserved

Table D.6 — DTC status bit 3 confirmedDTC definitions

Bit Description Cvt:
emission

CVT:
non-

emission
Mnemonic

3 confirmedDTC M M CDTC

 This bit shall indicate whether a malfunction was detected enough times to warrant that the DTC is stored in
long-term memory (e.g. pendingDTC has been set = ‘1’ one or more times, depending on the DTC confirmation
criteria).

A confirmedDTC does not always indicate that the malfunction is present at the time of the request (testFailed
can be used to determine if a malfunction is present at the time of the request).

Reset to logical ‘0’ after a call to ClearDiagnosticInformation or after aging criteria have been satisfied (e.g. 40
engine warm-ups without another detected malfunction). Furthermore this bit is reset when the fault record
associated with this DTC is overwritten by a newer DTC based upon vehicle-manufacturer-specific fault memory
overflow requirements.

DTC confirmation and aging criteria are defined by the vehicle manufacturer or mandated by On-Board
Diagnostic regulations.

Bit state after a successful ClearDiagnosticInformation service logical ‘0’

Reset to a logical ‘0’ after a call to ClearDiagnosticInformation.

Bit state definition Test Equipment Display Text

‘0’ = DTC has never been confirmed since the last call to
ClearDiagnosticInformation or after the aging criteria have been satisfied
for the DTC (or DTC has been erased due to fault memory overflow).

A confirmed DTC is not stored in
the ECU.

‘1’ = DTC confirmed at least once since the last call to
ClearDiagnosticInformation and aging criteria have not yet been satisfied.

A confirmed DTC is stored in the
ECU.

Pseudocode Operation
1. IF (initializationFlag_CDTC = FALSE)
2. Set initializationFlag_CDTC = TRUE
3. Set confirmedDTC = 0
4. Set confirmStage = INITIAL_MONITOR
5. IF (confirmStage = INITIAL_MONITOR)
6. IF ((DTC confirmation criteria satisfied = TRUE) AND

 (ClearDiagnosticInformation requested = FALSE))
7. Set confirmedDTC = 1
8. Reset aging status
9. Set confirmStage = AGING_MONITOR
10. ELSE
11. Set confirmedDTC = 0
12. IF (confirmStage = AGING_MONITOR)
13. IF ((ClearDiagnosticInformation requested = TRUE) OR

 (aging criteria satisfied = TRUE))
14. Set confirmedDTC = 0
15. Set confirmStage = INITIAL_MONITOR
16. ELSE IF ((most recent test result = FAILED) AND

 (ClearDiagnosticInformation requested = FALSE))
17. Reset aging status
18. ELSE

19. Update aging status as appropriate

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 279

Figure D.4 — DTC status bit 3 confirmedDTC logic

ISO 14229:2006(E)

280 © ISO 2006 – All rights reserved

Table D.7 — DTC status bit 4 testNotCompletedSinceLastClear definitions

Bit Description Cvt:
emission

CVT:
non-

emission
Mnemonic

4 testNotCompletedSinceLastClear C2 C2 TNCSLC

 This bit shall indicate whether a DTC test has ever run and been completed since the last time a call was made
to ClearDiagnosticInformation. One (‘1’) shall indicate that the DTC test has not run to completion. If the test
runs and passes or if the test runs and fails (e.g. testFailedThisOperationCycle = ‘1’), then the bit shall be set to
a ‘0’ (and latched).

Bit state after a ClearDiagnosticInformation service logical ‘1’

Reset to a logical ‘1’ after a call to ClearDiagnosticInformation.

Bit state definition Test Equipment Display Text

‘0’ = DTC test has returned either a passed or failed test result at least one
time since the last time diagnostic information was cleared.

DTC test completed since the last
code clear

‘1’ = DTC test has not run to completion since the last time diagnostic
information was cleared.

DTC test not completed since the
last code clear

 C2: Bit 4 (testNotCompletedSinceLastClear) and bit 5 (testFailedSinceLastClear) shall always be supported
together.
Pseudocode Operation

1. IF (initializationFlag_TNCSLC = FALSE)
2. Set initializationFlag_TNCSLC = TRUE
3. Set testNotCompletedSinceLastClear = 1
4. IF (ClearDiagnosticInformation requested = TRUE)
5. Set testNotCompletedSinceLastClear = 1
6. ELSE IF ((most recent test result = PASSED) OR (most recent test result =

FAILED))

7. Set testNotCompletedSinceLastClear = 0

Figure D.5 — DTC status bit 4 testNotCompletedSinceLastClear logic

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 281

Table D.8 — DTC status bit 5 testFailedSinceLastClear definitions

Bit Description Cvt:
emission

CVT:
non-

emission
Mnemonic

5 testFailedSinceLastClear C2 C2 TFSLC

 This bit shall indicate whether a DTC test has ever been completed with a failed result since the last time a call
was made to ClearDiagnosticInformation (i.e. this is a latched testFailedThisOperationCycle = ‘1’).

Zero (‘0’) shall indicate that the test has not run or that the DTC test ran and passed (but never failed). If the test
runs and fails, then the bit shall remain latched at a ‘1’. Unlike confirmedDTC, this bit is not reset by aging
criteria or due to an overflow of the fault memory.

Bit state after a successful ClearDiagnosticInformation service logical ‘0’

Reset to a logical ‘0’ after a call to ClearDiagnosticInformation.

Bit state definition Test Equipment Display Text

‘0’ = DTC test has not indicated a failed result since the last time diagnostic
information was cleared.

DTC test never failed since last
code clear

‘1’ = DTC test returned a failed result at least once since the last time
diagnostic information was cleared.

DTC test failed at least once since
last code clear

 C2: Bit 4 (testNotCompletedSinceLastClear) and bit 5 (testFailedSinceLastClear) shall always be supported
together.
Pseudocode Operation

1. IF (initializationFlag_TFSLC = FALSE)
2. Set initializationFlag_TFSLC = TRUE
3. Set testFailedSinceLastClear = 0
4. IF (ClearDiagnosticInformation requested = TRUE)
5. Set testFailedSinceLastClear = 0
6. ELSE IF ((most recent test result = FAILED) AND

 (ClearDiagnosticInformation requested = FALSE))

7. Set testFailedSinceLastClear = 1

Figure D.6 — DTC status bit 5 testFailedSinceLastClear logic

ISO 14229:2006(E)

282 © ISO 2006 – All rights reserved

Table D.9 — DTC status bit 6 testNotCompletedThisOperationCycle definitions

Bit Description Cvt:
emission

CVT:
non-

emission
Mnemonic

6 testNotCompletedThisOperationCycle M U TNCTOC

 This bit shall indicate whether a DTC test has ever run and been completed during the current operation cycle
(or completed during the current operation cycle after the last time a call was made to
ClearDiagnosticInformation).

A logical ‘1’ shall indicate that the DTC test has not run to completion during the current operation cycle. If the
test runs and passes or fails then the bit shall be set (and latched) to ‘0’ until a new operation cycle is started.

Bit state after a successful ClearDiagnosticInformation service logical ‘1’

Reset to a logical ‘1’ after a call to ClearDiagnosticInformation.

Bit state definition Test Equipment Display Text

‘0’ = DTC test has returned either a passed or
testFailedThisOperationCycle = ‘1’ result during the current drive cycle (or
since the last time diagnostic information was cleared during the current
operation cycle).

DTC test completed this operation
cycle

‘1’ = DTC test has not run to completion this operation cycle (or since the
last time diagnostic information was cleared this operation cycle).

DTC test not completed this
operation cycle

Pseudocode Operation
1. IF (initializationFlag_TNCTOC = FALSE)
2. Set initializationFlag_TNCTOC = TRUE
3. Set testNotCompletedThisOperationCycle = 1
4. Set lastOperationCycle = currentOperationCycle
5. IF (ClearDiagnosticInformation requested = TRUE)
6. Set testNotCompletedThisOperationCycle = 1
7. ELSE IF (currentOperationCycle != lastOperationCycle)
8. Set lastOperationCycle = currentOperationCycle
9. Set testNotCompletedThisOperationCycle = 1
10. ELSE IF ((most recent test result = PASSED) OR

 (most recent test result = FAILED))

11. Set testNotCompletedThisOperationCycle = 0

Figure D.7 — DTC status bit 6 testNotCompletedThisOperationCycle logic

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 283

Table D.10 — DTC status bit 7 WarningIndicator requested definitions

Bit Description Cvt:
emission

CVT:
non-

emission
Mnemonic

7 warningIndicatorRequested M U WIR

This bit shall report the status of any warning indicators associated with a particular DTC. Warning outputs may
consist of indicator lamp(s), displayed text information, etc. If no warning indicators exist for a particular DTC,
this status shall default to a logic ‘0’ state.

Conditions for activating the warning indicator shall be defined by the vehicle manufacturer/implementation, but
if the warning indicator is on for a given DTC, then confirmedDTC shall also be set to ‘1’ (with the exception
described below).

Bit state after a successful ClearDiagnosticInformation service logical ‘0’

Reset to a logical ‘0’ after a call to ClearDiagnosticInformation. Some ECUs may latch the failsafe strategy
associated with a particular confirmed fault for the current operation cycle. If the warning indicator is still
requested due to this latched failsafe following a call to ClearDiagnosticInformation, this bit shall not be cleared
to a logical ‘0’. Rather, this bit shall remain set to logical ‘1’ until the failsafe strategy is no longer active (e.g. test
is completed and passed). Additional reset conditions shall be defined by the vehicle
manufacturer/implementation.

Bit state definition Test Equipment Display Text

‘0’ = Server is not requesting warningIndicator to be active. DTC is currently not requesting
warning indication

‘1’ = Server is requesting warningIndicator to be active. DTC is currently requesting
warning indication

Pseudocode Operation
1. IF (initializationFlag_WIR = FALSE)
2. Set initializationFlag_WIR = TRUE
3. Set warningIndicatorRequested = 0
4. IF (((ClearDiagnosticInformation requested = TRUE) OR (TestResult = Passed) OR

 (vehicle manufacturer or implementation-specific warning indicator disable
criteria
 are satisfied)) AND (warning indicator not requested on due to latched
failsafe for
 particular DTC))

5. Set warningIndicatorRequested = 0
6. ELSE IF (((TestResult = Failed) AND warning indicator exists for the

particular DTC) AND
 ((confirmedDTC = 1) OR
 (vehicle manufacturer or implementation-specific warning indicator enable
 criteria are satisfied)))

7. Set warningIndicatorRequested = 1

ISO 14229:2006(E)

284 © ISO 2006 – All rights reserved

WarningIndicatorOnCriteriaFulfilled = warning indicator exists for particular DTC AND (confirmedDTC = 1 OR vehicle
manufacturer or implementation-specific warning indicator enable criteria are
satisfied).

WarningIndicatorOffCritieriaFulfilled = TestResult(Passed) OR vehicle manufacturer or implementation-specific warning
indicator disable criteria are satisfied.

Figure D.8 — DTC status bit 7 WarningIndicator requested logic

D.2.3 Example for operation of DTC status bits

This example provides an overview on the operation of the DTC status bits in a two-operation cycle
emissions-related OBD DTC. The Figure shows the handling for a two-operation cycle emissions-related OBD
DTC. The handling can also be applied to non-emissions-related OBD DTCs and is shown here for general
informational purposes.

NOTE In this example, the OBD server starts an operation cycle when the engine is started. The operation cycle
ends (and the next operation cycle begins) the next time that the engine is started.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 285

Figure D.9 — Example of a two-operation cycle emissions-related OBD DTC

D.3 DTCSeverityMask and DTCSeverity bit definitions

This subclause defines the mapping of the DTCSeverityMask/DTCSeverity parameters used with the
ReadDTCInformation service. Every server shall adhere to the convention for storing bit-packed DTC severity
information as defined in Table D.11 and Table D.12.

The severity information is reported in a one-byte value. Only the upper three bits (bit 7-5) of the one-byte
value are used to represent the DTC severity information. The remaining bits (bit 4-0) have to be set to zero
(0). Based on this the following bit coding applies to the three-bit DTC severity information contained in the
one-byte DTCSeverity parameter.

ISO 14229:2006(E)

286 © ISO 2006 – All rights reserved

Table D.11 — DTCSeverity byte definition

DTCSeverity byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

three-bit severity information reserved by ISO 14229 — to be set to zero (0)

Table D.12 — DTC severity bit definitions (bit 7-5)

Bit 7-5 Description Cvt Mnemonic

000b noSeverityAvailable M NSA

 There is no severity information available.

001b maintenanceOnly M MO

 This value indicates that the failure requests maintenance only.

010b checkAtNextHalt M CHKANH

 This value indicates that the failure requires a check of the vehicle at the next halt.

100b checkImmediately M CHKI

 This value indicates that the failure requires an immediate check of the vehicle.

D.4 DTC functional unit definitions

The DTCFunctionalUnit is implementation-specific and shall be specified in the respective implementation
standard.

D.5 DTCFaultDetectionCounter operation definition

The DTC fault detection counter operation for non-emissions-related servers is shown in Figure D.10.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 287

Key

1 test results = Passed
2 test results = Failed
3 test completes when it reaches minimum (-128) or maximum (127)
4 test run failure always causes fault detection counter to increment above 0 (so as not to double the fail detection time

following a test complete with pass)
5 same as 3
6 pendingDTC bit is set because this example is for non-emissions-related server/ECU

NOTE Whether or not each DTC status bit is actually required to be supported or not is defined in D.2 and should not be inferred
from this example.

7 same as 6
8 conditions are not met for test run (e.g. voltage out of range)
9 test did not run, therefore fault detection counter unchanged
10 vehicle manufacturer specific whether or not this bit is maintained between operation cycles or reset to zero

Figure D.10 — Example of DTCFaultDetectionCounter operation for non-emissions-related server

ISO 14229:2006(E)

288 © ISO 2006 – All rights reserved

D.6 DTCAgingCounter example

This example provides an overview on the operation of a DTCAgingCounter which counts the number of
driving cycles since the fault was last failed.

Key

1 DTCAgingCounter is incremented after completing an operation cycle in which test did not fail
2 pendingDTC is set to zero after an operation cycle in which the test completed and did not fail. In case an ECU does

not support a power down sequence (i.e. is immediately shut off when the ignition is turned off) it will be unable to
detect the end of the operation cycle. Therefore it is also valid to set the pendingDTC bit to zero at the beginning of
the next operation cycle

3 DTCAgingCounter is incremented after completing an operation cycle in which test did not fail
4 DTCAgingCounter continues to increment because test is not failing during these operation cycles
5 confirmedDTC is set to zero when aging criteria is fully satisfied (e.g. DTCAgingCounter reaches a specific value)
6 DTCAgingCounter reaches a maximum value (e.g. 40) at which time the confirmedDTC bit is cleared

Figure D.11 — DTCAgingCounter example

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 289

Annex E
(normative)

Input output control functional unit data parameter definitions

E.1 InputOutputControlParameter definitions

Table E.1 — inputOutputControlParameter definitions

Hex Description Cvt Mnemonic

00 returnControlToECU U RCTECU

 This value shall indicate to the server that the client no longer has control over the
input signal, internal parameter or output signal referenced by the
inputOutputLocalIdentifier.

Number of controlState bytes in request: 0

Number of controlState bytes in possible response: depends on the dataIdentifier

01 resetToDefault U RTD

 This value shall indicate to the server that it is requested to reset the input signal,
internal parameter or output signal referenced by the inputOutputLocalIdentifier to its
default state.

Number of controlState bytes in request: 0

Number of controlState bytes in possible response: depends on the dataIdentifier

02 freezeCurrentState U FCS

 This value shall indicate to the server that it is requested to freeze the current state of
the input signal, internal parameter or output signal referenced by the
inputOutputLocalIdentifier.

Number of controlState bytes in request: 0

Number of controlState bytes in possible response: depends on the dataIdentifier

03 shortTermAdjustment U STA

 This value shall indicate to the server that it is requested to adjust the input signal,
internal parameter or output signal referenced by the inputOutputLocalIdentifier in
RAM to the value(s) included in the controlOption parameter(s) (e.g. set Idle Air
Control Valve to a specific step number, set pulse width of valve to a specific
value/duty cycle).

Number of controlState bytes in request: depends on the dataIdentifier

Number of controlState bytes in possible response: depends on the dataIdentifier

04 - FF ISOSAEReserved M ISOSAERESRVD

 This value is reserved by ISO 14229 for future definition.

ISO 14229:2006(E)

290 © ISO 2006 – All rights reserved

Annex F
(normative)

Remote activation of routine functional unit data parameter definitions

F.1 RoutineIdentifier definition

Table F.1 — routineIdentifier definition

Hex Description Cvt Mnemonic

0000 - 00FF ISOSAEReserved M ISOSAERESRVD

 This value shall be reserved by ISO 14229 for future definition.

0100 - 01FF TachographTestIds U TACHOTI_

 This range of values is reserved to represent Tachograph test result values.

0200 - DFFF vehicleManufacturerSpecific U VMS_

 This range of values is reserved for vehicle-manufacturer-specific use.

E000 E1FF OBDTestIds U OBDTI_

 This range of values is reserved to represent OBD/EOBD test result values.

E200 DeployLoopRoutineID C DLRI_

 This value shall be used to initiate the deployment of the previously selected
ignition loop.

E201 – E2FF SafetySystemRoutineIDs M SASRI_

 This range of values shall be reserved by ISO 14229 for future definition of
routines implemented by safety-related systems.

E300 - EFFF ISOSAEReserved M ISOSAERESRVD

 This value shall be reserved by this document for future definition.

F000 - FEFF systemSupplierSpecific U SSS_

 This range of values is reserved for system-supplier-specific use.

FF00 eraseMemory U EM_

 This value shall be used to start the server's memory erase routine. The control
option and status record format shall be ECU-specific and defined by the
vehicle manufacturer.

FF01 checkProgrammingDependencies U CPD_

 This value shall be used to check the server’s memory programming
dependencies. The control option and status record format shall be
ECU-specific and defined by the vehicle manufacturer.

FF02 eraseMirrorMemoryDTCs M EMMDTC_

 This value shall be used to erase the server’s mirror memory DTCs.

FF03 - FFFF ISOSAEReserved M ISOSAERESRVD

 This value shall be reserved by ISO 14229 for future definition.

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 291

Annex G
(informative)

Examples for addressAndLengthFormatIdentifier parameter values

G.1 addressAndLengthFormatIdentifier example values

Table G.1 contains examples of combinations of values for the high and low nibble of the
addressAndLengthFormatIdentifier. The following shall be considered.

⎯ Values, which are either marked as “not applicable” for the “manageable memorySize” or the
“memoryAddress range”, shall not be used and shall be rejected by the server via a negative response
message.

⎯ Values with an applicable “manageable memorySize” and “memoryAddress range” are allowed for this
parameter.

ISO 14229:2006(E)

292 © ISO 2006 – All rights reserved

Table G.1 — addressAndLengthFormatIdentifier example

Description

Bit 7-4 (high nibble)
number of memorySize bytes

Bit 3-0 (low nibble)
number of memoryAddress bytes Hex

Bytes used for
memorySize parameter

Manageable size Bytes used for
memoryAddress parameter

Addressable
memory

00 not applicable not applicable not applicable not applicable

01 not applicable not applicable 1 256 byte – 1

02 not applicable not applicable 2 64 KB – 1

03 not applicable not applicable 3 16 MB – 1

04 not applicable not applicable 4 4 GB – 1

05 not applicable not applicable 5 1.024 GB – 1

06 … 0F : : : :

10 1 256 byte not applicable not applicable

11 1 256 byte 1 256 byte – 1

12 1 256 byte 2 64 KB – 1

13 1 256 byte 3 16 MB – 1

14 1 256 byte 4 4 GB – 1

15 1 256 byte 5 1.024 GB – 1

16 … 1F : : : :

20 2 64 KB not applicable not applicable

21 2 64 KB 1 256 byte – 1

22 2 64 KB 2 64 KB – 1

23 2 64 KB 3 16 MB – 1

24 2 64 KB 4 4 GB – 1

25 2 64 KB 5 1.024 GB – 1

26 … 2F : : : :

30 3 16 MB not applicable not applicable

31 3 16 MB 1 256byte – 1

32 3 16 MB 2 64 KB – 1

33 3 16 MB 3 16 MB – 1

34 3 16 MB 4 4 GB – 1

35 3 16 MB 5 1.024 GB – 1

36 … 3F : : : :

40 4 4 GB not applicable not applicable

41 4 4 GB 1 256 byte – 1

42 4 4 GB 2 64 KB – 1

43 4 4 GB 3 16 MB – 1

44 4 4 GB 4 4 GB – 1

45 4 4 GB 5 1.024 GB – 1

46 … FF : : : :

ISO 14229:2006(E)

© ISO 2006 – All rights reserved 293

Bibliography

[1] SAE J1939-73, Recommended Practice for a Serial Control and Communications Vehicle Network
Application Layer — Diagnostics

[2] ANSI/IEEE 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

[3] ISO 16844-7, Road vehicles — Tachograph systems — Part 7: Parameters

ISO 14229:2006(E)

ICS 43.180
Price based on 293 pages

© ISO 2006 – All rights reserved

